Simulation of the phase transformations of the modified heat resistant alloy HK 40
Keywords:
ACI HK 40; simulation; phase transformations; theoretical method; heat resistant alloy.Abstract
In this work, the simulation of the phase diagram of the heat-resistant alloy ACI HK 40 modified with the addition of different contents of elements such as aluminum and boron is carried out, using the Thermo-Calc Software. Its application allowed obtaining the phase diagram and evaluating the evolution of the fractions of solid phases, during solidification, under equilibrium conditions in the temperature and composition ranges corresponding to the precipitation windows of the phases obtained in correspondence with the estimated mechanical properties. As well as, the evolution of the microstructure of the steel when subjected to high temperatures is predicted, prevent the precipitation of unwanted secondary phases such as the sigma phases (σ) and predict the feasibility of applying thermal treatments to induce the precipitation of said secondary phases that could increase the alloy heat resistance.
References
TANCRET, F.; BHADESHIA, H. K. D. H. “Design of a creep resistant nickel base superalloy for power plant applications: Part 2-Phase diagram and segregation simulation”. Materials science and technology. 2003, 19 (3), 291-295. ISSN: 0267-0836.
NAVAEI, A.; ESLAMI-FARSANI, R.; ABBASI, M. “Evaluation and modification of inclusion characteristics in HK 40 heat resistant cast steel”. International Journal of Minerals, Metallurgy, and Materials, 2013, 20 (4), 354-359.ISSN: 1674-4799.
DING, X. F.; LIU, D. F.; ZHENG, Y. R.; FENG, Q. “Effect of B micro-alloying on micro-porosities in as-cast HK 40 alloys”. Acta Metallurgica Sinica. 2015, 51 (9), 1121-1128. ISSN: 1006-7191.
FU, J. W. et al. “Formation of a two-phase microstructure in Fe–Cr–Ni alloy during directional solidification”. Journal of Crystal Growth. 2008, 311 (1), 132-136.ISSN: 0022-0248.
KIM, Y. J. et al. “High temperature mechanical properties of HK 40-type heat-resistant cast austenitic stainless steels”. Journal of Materials Engineering and Performance. 2010, 19 (5), 700-704. ISSN:1059-9495.
WHITTAKER, M.; WILSHIRE, B.; BREAR, J. “Creep fracture of the centrifugally-cast super austenitic steels, HK 40 and HP40”. Materials Science and Engineering: A. 2013, 580, 391-396. ISSN: 0921-5093.
INOUE, H.; KOSEKI, T. “Solidification mechanism of austenitic stainless steels solidified with primary ferrite”. Acta Materialia. 2017, 124, 430-436. ISSN:1359-6454.
CALLIARI, I. et al. “Investigation on solid-state phase transformations in a 2510 duplex stainless steel grade”. Metals, 2020, 10 (7), 967. ISSN: 2075-4701.
XIANFEI, D. I. N. G.; DONGFANG, L. I. U.; YUNRONG-ZHENG, Q. F. “Effect of B micro-alloying on micro-porosities in as-cast HK 40 alloys”. Acta Metallurgica Sinica. 2015, 51 (9), 1121-1128. ISSN: 1006-7191.
DING, X. F. et al. “Solidification microstructure formation in HK 40 and HH40 alloys”. International Journal of Minerals, Metallurgy, and Materials. 2016, 23 (4), 442-448. ISSN: 1674-4799.
FU, J. W. et al. “Formation of a two-phase microstructure in Fe–Cr–Ni alloy during directional solidification”. Journal of Crystal Growth. 2008, 311 (1), 132-136. ISSN: 0022-0248.
ARGANIS-JUÁREZ, C. R. et al. “Sensitization of an austenitic stainless steel due to the occurrence of δ-ferrite”. Corrosion Reviews. 2019, 37 (2), 179-186. ISSN: 2191-0316.
GOKOVIĆ-GEKIĆ, A.; AVDUŠINOVIĆ, H.; HODŽĆ, A.; MANDŽUKA, E. “Effect of Temperature and Time on Decomposition of δ-ferrite in Austenitic Stainless Steel” Materials and Geoenvironment. 2020, 67 (2), 65-71. ISSN: 2772-8838.
GUO, J.; CAO, T.; CHENG, C.; ZHAO J. “Mechanism of M23C6→ M7C3 carbides reaction of Cr35Ni45Nb type alloy during carburization”. Materials Research Express. 2021, 8 (9), 1-7. ISSN: 2053-1591.
KONDRAT’EV, S. Y. et al. “Kinetics of the formation of intermetallic phases in HP-type heat-resistant alloys at long-term high-temperature exposure”. Metallurgical and Materials Transactions A, 2017, 48 (1), 482-492. ISSN:1073-5623.
SAUCEDO-MUÑOZ, M. L. et al. “Precipitation analysis of as-cast HK 40 steel after isothermal aging”. International Journal of Minerals, Metallurgy, and Materials. 2017, 24 (10), 1125-1133. ISSN: 1674-4799.
VALIENTE-BERMEJO, M. A.; WESSMAN, S. “Computational thermodynamics in ferrite content prediction of austenitic stainless-steel weldments”. Welding in the World. 2019, 63 (3), 627-635. ISSN: 432-288.
MARIN, R. et al. “σ-phase formation in super austenitic stainless steel during directional solidification and subsequent phase transformations”. Metallurgical and Materials Transactions A. 2020, 51 (7), 3526-3534. ISSN:1073-5623.
ANDERSSON, J. O. et al. “Thermo-Calc& DICTRA, computational tools for materials science”. Calphad. 2002, 26 (2), 273-312. ISSN 0364-5916.
BALE, C. W. et al. “FactSage thermochemical software and databases—recent developments”. Calphad. 2009, 33 (2), 295-311. ISSN: 2191-0316.
MARIÑO, M. et al. “Design of a creep resistant iron-base superalloy for Herreshoff furnaces. Part I-Mechanical properties modelling and phase diagram simulation”. Minería & Geología, 2008, 24 (3), 1-17. ISSN: 1993-8012.
VELÁZQUEZ, A. “Fragilización de la aleación HH por precipitación de fases sigma”. Tesis de doctorado, Instituto Superior Minero Metalúrgico Dr. Antonio Núñez Jiménez, Moa, Holguín, 2002. Revisado en 18-25 enero de 2022. URL: https://1library.co/document/z31jv48y-fragilizacion-aleacion-hh-precipitacion-fases-sigma.html
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Maritza Mariño-Cala, Yanier Sánchez-Hechavarría, Ángel Eduardo Mascarell-Batista, Ernesto Martorell-Fernández
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
This journal provides immediate open access to its content, based on the principle that offering the public free access to research helps a greater global exchange of knowledge. Each author is responsible for the content of each of their articles.