Estudio teórico de la descomposición térmica del ácido malónico en fase gaseosa y en disolución acuosa

Authors

  • Carolina González-Marín Universidad Nacional de Colombia.
  • Sara González-Ochoa Universidad Nacional de Colombia.
  • Lucía Aristizabal-Lanza Universidad Nacional de Colombia.
  • Pablo Ruiz-Rios Universidad Nacional de Colombia.
  • Jairo Quijano-Tobón Universidad Nacional de Colombia.

Abstract

En este trabajo se presenta el estudio computacional de la reacción de descomposición térmica del ácido malónico. Se modeló mediante dos mecanismos, a cinco temperaturas, en fase gaseosa y en disolución acuosa. Los cálculos fueron realizados mediante la teoría de los funcionales de la densidad. Para las condiciones estudiadas de la reacción, la constante de velocidad fue calculada con la ecuación de Eyring-Polanyi. Los resultados fueron comparados con los valores experimentales reportados. Otro tipo de cálculo realizado fueron los orbitales naturales de enlace. Los resultados obtenidos permitieron discutir diferentes aspectos acerca de los mecanismos de reacción planteados.

Palabras clave: B3LYP, M05-2X, ácido malónico, descomposición térmica, mecanismo de reacción.

References

GHOSH DASTIDAR, T.; NETRAVALI, A. N. “‘Green’ crosslinking of native starches with malonic acid and their properties”. Carbohydr. Polym. 2012, 90 (4), 1620–1628. ISSN 0144-8617

APELBLAT, A.; MANZUROLA, E. “Volumetric properties of aqueous solutions of malonic acid”. J. Chem. Thermodyn. 2016, 102, 63–67. ISSN 0021-9614

MASENDE, Z.; KUSTER, B.; PTASINSKI, K.; JANSSEN, F.; KATIMA, J.; SCHOUTEN, J. “Kinetics of malonic acid degradation in aqueous phase over Pt/graphite catalyst”. Appl. Catal. B Environ. 2005, 56 (3), 189–199. ISSN 0926-3373

WAKIL, J. S. “A malonic acid derivative as an intermediate in fatty acid synthesis”. J. Am. Chem. Soc. 1958, 80 (23), 6465–6465. ISSN 0002-7863

VELLIS, De J.; SHANNON, L. M.; LEW, J. Y. “Malonic acid biosynthesis in bush bean roots. I. evidence for oxaloacetate as immediate precursor”. Plant Physiol., 1963, 38 (6), 686–690. ISSN 1532-2548

KIM, Y. “Malonate metabolism: biochemistry, molecular biology, physiology, and industrial application”. J. Biochem. Mol. Biol. 2002, 35 (5), 443–451. ISSN 1225-8687

AMBATI, C.; YUAN, F.; ABU ELHEIGA, L.; ZHANG, Y.; SHETTY, V. “Identification and quantitation of malonic acid biomarkers of In-born error metabolism by targeted metabolomics”. J. Am. Soc. Mass Spectrom. 2017, 28 (5), 929–938. ISSN 1044-0305

HINSHELWOOD, C. “XX.-The Rate of Decomposition of Malonic Acid”. J. Chem. Soc. Trans, 1920, 117 (1), 156–165. ISSN 0368-1645

EL AWAD, A.; MAHFOUZ, R. “Kinetic analysis of isothermal, non-isothermal and catalysed termal Decomposition of Malonic Acid”. J. Therm. Anal. 1989, 35, 1413–1414. ISSN 1388-6150

CAO, J. R.; BACK, R. A. “The thermolysis and photolysis of malonic acid in the gas phase”. Can. J. Chem. 1986, 64 (5), 967–968. ISSN 0008-4042

HALL, G. A. “The kinetics of the decomposition of malonic acid in aqueous solution”. J. Am. Chem. Soc. 1949, 71 (8), 2691–2693. ISSN 0002-7863

CRUZ CASTAÑEDA, J.; NEGRÓN MENDOZA, A.; FRÍAS, D.; COLÍN GARCÍA, M.; HEREDIA, A.; RAMOS BERNAL, S.; VILLAFAÑE BARAJAS, S. “Chemical evolution studies: the radiolysis and thermal decomposition of malonic acid”. J. Radioanal. Nucl. Chem. 2015, 304 (1), 219–225. ISSN 0236-5731

CLARK, L. W. “A systematic study of the kinetics of the decomposition of malonic acid in non-aqueous solvents”. J. Phys. Chem. 1958, 62 (1), 79–81. ISSN 0022-3654

MIDYANA, G. G.; MAKITRA, R. G.; PAL’CHIKOVA, E. Y. “Solvent effect on the reaction of decarboxylation of malonic acid. Correlation analysis”. Russ. J. Gen. Chem. 2010, 80 (5), 944–947. ISSN 1070-3632

CAIRES, F. J.; GOMES, D. J. C.; GIGANTE, A. C.; LIMA, L. S.; CARVALHO, C. T.; IONASHIRO, M. “Thermal behavior of malonic acid, sodium malonate and its compounds with some bivalent transition metal ions in dynamic N2 and CO2 atmospheres”. Braz. J. Therm. Anal. 2013, 2 (1), 12–16. ISSN 2316-9842

STANFORD, V. L.;VYAZOVKIN, S. “Thermal decomposition kinetics of malonicacid in the condensed phase”. Ind. Eng. Chem. Res. 2017, 56 (28), 7964–7970. ISSN 0888-5885

LOUDON, A. G.; MACCOLL, A.; SMITH, D. “Heavy atom kinetic isotope effects. Part 1 .-liquid phase decarboxylation of malonic acid”. J. Chem. Soc. Faraday Trans. 1. 1972, 69.(1), 894–898. ISSN0956-5000

HUANG, C. L.; WU, C. C.;LIEN, M. H. “Ab initio studies of decarboxylations of the β-keto carboxylic acids XCOCH2COOH (X = H, OH, and CH3)”. J. Phys. Chem. A. 1997, 101 (42), 7867–7873. ISSN 1089-5639

DMITRIEVA, N.; GRIDCHIN, S.; ROMODANOVSKII, P.; MAIOROV, A. “Standard enthalpies of formation of D,L-α-alanyl-glycine and the products of its dissociation in aqueous solutions”. Russ. J. Phys. Chem. A. 2010, 84 (11), 1997–1999. ISSN 0036-0244

FRISCH, M. J. et. al. “Gaussian 09, Revision B.01.”. Gaussian, Inc., Wallingford CT, 2010.

LEE, C.; YANG, W.; PARR, R. G. “Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density” Phys. Rev. B, 1988, 37 (2), 785–789.ISSN 1098-0121

BECKE, A. D. “Density-functional thermochemistry. III. The role of exact exchange,” J. Chem. Phys., 1993, 98, (7), 5648–5652. ISSN 0021-9606

STEPHENS, P. J.; DEVLIN, F. J.; CHABALOWSKI, C. F.; FRISCH, M. J. “Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields,” J. Phys. Chem., 1994, 98, (45), 11623–11627. ISSN 0022-3654

ZHAO, Y.; SCHULTZ, N. E.; TRUHLAR, D. G. “Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and noncovalent interactions,” J. Chem. Theory Comp., 2006, 2, (2), 364–382.ISSN 1549-9618

DITCHFIELD, R.; HEHRE, W. J.; POPLE, J. “Self-Consistent Molecular-Orbital Methods. IX. An Extended Gaussian-Type Basis for Molecular-Orbital Studies of Organic Molecules,” J. Chem. Phys., 1971, 54, 724–728. ISSN 0021-9606

MERRICK, J. P.; MORAN, D.; RADOM, L. “An evaluation of harmonic vibrational frequency scale factors,” J. Phys. Chem. A, 2007, 111, (45), 11683–11700. ISSN 1089-5639

MCQUARRIE, D.; SIMON, J.Molecular Thermodynamics. Sausalito: University Science Books, 1999.ISBN 1-891389-05-X

TOMASI, J.; MENNUCCI, B.; CAMMI, R. “Quantum mechanical continuum solvation models.,” Chem. Rev., 2005, 105, (8), 2999–3093.ISSN 0009-2665

GLASSTONE, K.; LAIDLER, K.; EYRING, H.The Theory of Rate Processes. New York: McGraw-Hill, 1941.ISBN 0070233608

BENSON, S. The Foundations of Chemical Kinetics. New York: McGraw-Hill, 1960.ISBN 0070047782

FUKUI, K. “A formulation of the reaction coordinate,” J. Phys. Chem., 1970, 74, (23), 4161–4163. ISSN 0022-3654

REED, A. E.; WEINHOLD, F. “Natural bond orbital analysis of nearHartree – Fock water dimer,” J. Chem. Phys., 1983, 78, 4066–4073. ISSN 0021-9606

REED, A. E.; CURTISS, L. A.; WEINHOLD, F. “Intermolecular interactions from a natural bond orbital , donor-acceptor viewpoint,” Chem. Rev., 1988, 88, 899–926. ISSN 0009-2665

GLENDENING, E. D.; BADENHOOP,J. K.;REED, A.E.; CARPENTER, J.E.; MORALES, C.E.; WEINHOLD, F. “NBO 5.0” Theoretical Chemistry Institute, University of Wisconsin, Madison, 2001

WIBERG, K. B. “Application of the Pople-Santry-Segal CNDO method to the ciclopropylcarbinyl and cyclobutyl cation and to bicyclobutane,” Tetrahedron, 1968, 24, 1083–1096.ISSN 0040-4020

GAO, J.“A theoretical investigation of the enol content of acetic acid and the acetate ion in aqueous solution,” J. Mol. Struct. THEOCHEM, 1996, 370, 203–208.ISSN 0166-1280

LAURELLA, S.β-cetoamidas : estudio de equilibrios tautoméricos y reactividad química.Tesis Doctoral, Universidad Nacional de la Plata, La Plata, 2012.

SPENCER, J. N.; HOLMBOE, E.; KIRSHENBAUM, M.; FIRTH, D.; PINTO, P. “Solvent effects on the tautomeric equilibrium of 2,4-pentanedione,” Can. J. Chem., 1982, 60, 1178-1182.ISSN 0008-4042

DUAN,X.; PAGE, M. "Theoretical investigation of competing mechanisms in the thermal unimolecular decomposition of acetic acid and the hydration reaction of ketene," J. Am. Chem. Soc., 1995,117, 5114-5119.ISSN 0002-7863

FREY, J.; RAPPOPORT, Z. “Observation of an amide enol of bis(2,4,6-triisopropylphenyl)acetic acid,” J. Am. Chem. Soc., 1996, 118, (16), 3994–3995.ISSN 0002-7863

NGUYEN, T. L.; XUE, B. C.; ELLISON, G. B.; STANTON, J. F. “Theoretical study of reaction of ketene with water in the gas phase: formation of acetic acid?,” J. Phys. Chem. A, 2013, 117, (43), 10997–11005. ISSN 1089-5639

HEGARTY, A. F.; NGUYEN, M. T. “Molecular orbital study on the hydrolysis of ketene by water dimer: β-carbon vs. oxygen protonation?” J. Am. Chem. Soc., 1984, 106, 1552-1557.ISSN 0002-7863

KRESGE, A. “Ingold Lecture. Reactive intermediates: carboxylic acid enols and other unstable species,” J. Chem. Soc. Rev., 1996, 25, 275-280. ISSN 0306-0012

MOYANO, A.; PERICAS, M.; VALENTÍ, E. “A theoretical study on the mechanism of the thermal and the acid-catalyzed decarboxylation of 2-oxetanones (β-Lactones),” J. Org. Chem., 1989, 54, (3), 573–582.ISSN 0022-3263

HAMMOND, G. “A Correlation of Reaction Rates,” J. Am. Chem. Soc., 1955, 77, (2), 334–338.ISSN 0002-7863

Published

2019-05-23

How to Cite

González-Marín, C., González-Ochoa, S., Aristizabal-Lanza, L., Ruiz-Rios, P., & Quijano-Tobón, J. (2019). Estudio teórico de la descomposición térmica del ácido malónico en fase gaseosa y en disolución acuosa. Revista Cubana De Química, 31(2), 155–173. Retrieved from https://cubanaquimica.uo.edu.cu/index.php/cq/article/view/4890

Issue

Section

Artículos