Circular dichroism and fluorescence in the evaluation of the chemical-physical and biological reference material of nimotuzumab

Authors

  • Stephania Porras-Vega Centro de Inmunología Molecular (CIM). La Habana, Cuba
  • Roxana Váldez-Núñez Centro de Inmunología Molecular (CIM). La Habana, Cuba
  • Jose Arberto Gómez-Pérez Centro de Inmunología Molecular (CIM). La Habana, Cuba
  • Ingrid Ruiz-Ramirez Centro de Inmunología Molecular (CIM). La Habana, Cuba
  • Yamilet de la Rosa Romero-Batista Centro de Inmunología Molecular (CIM). La Habana, Cuba

Keywords:

nimotuzumab; reference material; circular dichroism; intrinsic fluorescence.

Abstract

The establishment of a reference material is necessary for the quality control tests that are
carried out on drugs, guaranteeing reliable and traceable measurements. A new candidate
reference material for Nimotuzumab was developed at the Center for Molecular
Immunology with the aim of replacing the current one before its expiration. In this work,
was determined the secondary structure and thermal stability of materials by circular
dichroism in the ultraviolet distant and three-dimensional folding by means of the near
ultraviolet and intrinsic fluorescence. Both materials presented a predominance of β sheets
(~ 42%) and thermodynamic stability of ~ 71 o C. The three-dimensional folding showed
very similar spectra in terms of the position of the absorption bands of the aromatic
residues and the intensity of fluorescence emission for the Tyr (336 nm) and for the Trp
(337 nm).

References

1. MAZORRA, Z.; et al. Nimotuzumab: beyondthe EGFR signaren casca de inhibition. In
Seminars in Oncology [en línea]. [fecha de consulta 27 enero 2020]. Disponible en:
https://pubmed.ncbi.nlm.nih.gov/30318080/
2. MATEO, C.; et al. “Humanization of a mouse monoclonal antibody that blocks the
epidermal growth factor receptor: recovery of antagonistic activity”. Immuno technology
1997, 3(1) https://doi.org/10.1016/s1380-2933(97)00065-1
3. MONOGIOUDI E.; et al. Committee for the Harmonisation of Autoimmune Testing
(C-HAT) of the International Federation of Clinical Chemistry and Laboratory Medicine
(IFCC). Certified reference material against PR3 ANCA Ig Gautoantibodies. From
development to certification. ClinChemLabMed. 2019, 57(8), 1197-1206.
doi: 10.1515/cclm-2018-1095.
4. SCHIEL, J. E. y TURNER, A. “The NISTmAb Reference Material 8671 lifecycle
management and quality plan”. Analytical and bioanalytical chemistry. 2018, 410(8),
https://doi.org/10.1007/s00216-017-0844-2
5. KIELBASA, A.; GADZAŁA-KOPCIUCH R. y BUSZEWSKI, B. “Reference Materials:
Significance, General Requirements, and Demand”. Critical Reviews in Analytical
Chemistry. 2016, 46 (3), https://doi.org/10.1080/10408347.2015.1045120
6. MONOGIOUDI E, ZEGERS I. “Certified Reference Materials and their need for the
diagnosis of autoimmunediseases”. Mediterr J Rheumatol. 2019, 30(1), 26-32.
doi: 10.31138/mjr.30.1.26. Disponible en: https://pubmed.ncbi.nlm.nih.gov/32185339/
7. CECMED Centro para el Control Estatal de los Medicamentos, Equipos y Dispositivos
Médicos Materiales de Referencia para medicamentos. Regulación No. 22 – 2012. La
Habana, Cuba. Ministerio de Salud Pública. 2012.
8. CIM Centro de Inmunología Molecular Programa para el establecimiento, cuidado y
conservación de los materiales de referencia. 2008. PG-25/ 01.
9. SCHIEL J.E.; et al. “The NISTmAb Reference Material 8671 value assignment,
homogeneity, and stability”. Analytical and Bioanalytical Chemistry. 2018, 410(8).
https://doi.org/10.1007/s00216-017-0800-1
10. Kestens V, Gerganova T, Roebben G, Held A. “A new certified reference material for
size and shape analysis of nanorods using electron microscopy”. Anal BioanalChem. 2021,
413(1), 141-157. doi: 10.1007/s00216-020-02984-z. Epub 2020 Oct 13.
11. GREENFIELD, N.J. “Using circular dichroism spectra to estimate protein secondary
structure”. Nature Protocols [en línea]. 2018, 1(6) [fecha de consulta 27 enero 2020].
Disponible en: https://www.nature.com/articles/nprot.2006.202
12. SAKAI-KATO K.; et al. Refining Calibration Procedures of Circular Dichroism
Spectrometer to Improve Usability. Anal Sci. 2019 35(11), 1275-1278.
doi: 10.2116/analsci.19N022.
13. WHITMORE L, WALLACE BA. DICHROWE B., An online server for protein
secondary structure analyses from circular dichroism spectroscopic data. Nucleic Acids
Res. 2004 Jul 1; 32(Web Server issue):W668-73. doi: 10.1093/nar/gkh371. PMID:
15215473; PMCID: PMC441509. fecha de consulta 27 enero 2020]. Disponible en:
https://academic.oup.com/nar/article/32/suppl_2/W668/1040470
14. PAUL, M.; VIEILLARD, V.; JACCOULET, E. y ASTIER, A. “Long-term stability of
diluted solutions of the monoclonal antibody rituximab. International”. Journal of
Pharmaceutics. 2012, 436 (1-2). https://doi.org/10.1016/j.ijpharm.2012.06.063
15. PAULI, J.; et al. “Influence of label and charge density on the association of the
therapeutic monoclonal antibodies trastuzumab and cetuximab conjugated to anionic
fluorophores”. ChemBioChem. 2017, 18 (1). https://doi.org/10.1002/cbic.201600299
16. MOORE-KELLY C.; et al. “Automated High- Throughput Capillary Circular
Dichroism and Intrinsic Fluorescence Spectroscopy for Rapid Determination of Protein
Structure”. Anal Chem. 2019, 91(21), 13794-13802. doi: 10.1021/acs.analchem.9b03259.
17. LEWIS R L, Seal EL, Lorts AR, Stewart AL. “Circular dichroism spectroscopy:
Enhancing a traditional undergraduate biochemistry laboratory experience”. Biochem Mol
BiolEduc. 2017, 45(6), 515-520. doi: 10.1002/bmb.21078.
18. KELLY, S. M. Y N. C. PRICE. The application of circular dichroism to studies of
protein folding and unfolding. Biochimica Et Biophisica Acta- Protein Structure and
Molecular Enzymology. 1338 (2),161-185. [fecha de consulta 27 enero 2020]. Disponible
en:https://scholar.google.es/scholar?hl=es&as_sdt=0%2c5&q=
The+application+of+circula+dichroism+to+studies+of+protein+folding+and+unfolding+do
i&btnG=#d=gs_qabs&u=%23p%3DKKDHcCDzkAoJ
19. CIM. Estabilidad del MRT (QFB) hR3/1605 almacenado a 4oC por 36 meses. Intranet
del Centro de Inmunología Molecular. Siboney, Playa. 2020. H10 REST-0032/00
20. CIM. Estabilidad del MRT (QFB) hR3/1605 almacenado a -70oC por 36 meses. .
Intranet del Centro de Inmunología Molecular. Siboney, Playa. 2020, H10 REST-0033/00
21. MORO-PÉREZ, L.; et al. “Conformational characterization of a novel anti-HER2
candidate antibody. PLoSOne”. 2019, 14 (5). https://doi.org/10.1371/journal.pone.0215442
22. VERMEER, A.W. y NORDE, W. “The termal stability of inmunoglobulin: unfolding
and aggregation of a multi-domain protein”. Biophysical Journal. 2019, 78.
https://doi.org/10.1016/s0006-3495(00)76602-1
23. KLIMTCHUK, E.S.; et al. “The critical role of the constant region in thermal stability
and aggregation of amyloidogenic immunoglobulin light chain”. Biochemistry. 2010,
49(45).
24. RAO, G.; et al. “Use of a folding model and in situ spectroscopic techniques for
rational formulation development and stability testing of monoclonal antibody
therapeutics”. J PharmSci. 2010, 99(4). https://doi.org/10.1002/jps.21938
25. LIU, J.; et al. “Assessing Analytical Similarity of Proposed Amgen Biosimilar ABP
501 to Adalimumab”. BioDrugs. 2016, 30(4). https://doi.org/10.1007/s40259-016-0184-3

Published

2021-03-10

How to Cite

Porras-Vega, S., Váldez-Núñez, R., Gómez-Pérez, J. A., Ruiz-Ramirez, I., & Romero-Batista, Y. de la R. (2021). Circular dichroism and fluorescence in the evaluation of the chemical-physical and biological reference material of nimotuzumab. Revista Cubana De Química, 33(1), 3–21. Retrieved from https://cubanaquimica.uo.edu.cu/index.php/cq/article/view/5164

Issue

Section

Artículos