Estimation of the biogas potential from poultry litter

Authors

  • Wendy L. Duharte-Rodríguez Centro de Estudios de Energía y Procesos Industriales. Universidad de Sancti Spíritus “José Martí Pérez”, Sancti Spíritus, Cuba
  • Leyanet Odales-Bernal Centro de Estudios de Energía y Procesos Industriales. Universidad de Sancti Spíritus “José Martí Pérez”, Sancti Spíritus, Cuba
  • Rozney R. Álvarez-Meneses Delegación Provincial del Ministerio de la Agricultura en Sancti Spíritus, Cuba
  • Lisbet M. González-López Centro de Estudios de Energía y Procesos Industriales. Universidad de Sancti Spíritus “José Martí Pérez”, Sancti Spíritus, Cuba
  • Ernesto L. Barrera-Cardoso Centro de Estudios de Energía y Procesos Industriales. Universidad de Sancti Spíritus “José Martí Pérez”, Sancti Spíritus, Cuba

Keywords:

poultry litter; biogas; biogas potential.

Abstract

Technological advances for biogas generation have allowed to revalue the poultry litter as it is a source of biomass with a high energy content. In this work was realized the potential study of the Poultry Litter Industry of the Sancti Spiritus province as a feasible treatment of it wastes. Physical-chemical characterization, biogas potential determination and the electrical and thermal power form poultry litter was carried out. The volatile solids were within the range reported by the literature for replacement and laying hen manure, being 44, 20 % and 43, 09 % and it was estimated that 8178m3 of biogas can be generated daily, which would represent a production between 6656 MWh of electrical energy and 9 641 MWh of thermal energy per year, which would largely support the energy of the demand of poultry farms.

References

1. M. Weithäuser, f.S., Fischer, j. Grope, t. Weidele, h. Gattermann, "Guía sobre el Biogás, desde la producción hasta el uso". FNR, Abt. Öffentlichkeitsarbeit: Gülzow, 2013, 122-148. ISBN: 3-00-014333-5
2. González, A., Cuadros, F., Celma, A. R., & Rodríguez, F. L. "Environmental and energetic benefits derived from the anaerobic digestion of agroindustrial wastes". International Journal of Global Warming. 2012, 4(3-4), 407. doi:10.1504/ijgw.2012.049437
3. Zinder, S.H., Physiological Ecology of Methanogens. ed. Methanogenesis Ecology, Physiology, Biochemistry and Genetics, 1993, 128-206. Editorial Springer, Boston, MA. ISBN: 978-1-4615-2391-8
4. Estrada P., M.M., "Manejo y procesamiento de la gallinaza". Revista La sallista de investigación. 2005, 2(1), 43-48. ISSN: 1794-4449
5. Suárez-Hernández, J., et al.,Evaluación del potencial de producción del biogás en Cuba. Pastos y Forrajes. 2018, 41(2), 85-92. ISSN: 2078-8452
6. APHA, Standard Methods for the Examination of Water and Wastewater, in American Water Works Association, Water Environment Federation and American Public Health Association. 2012, American Public Health Association: Washington D.C. ISBN: 9780875532875
7. Skoog, D.A.W., Donald. M., Introducción a la Química Analitica, ed. Reverte. 2002, Barcelona, España. ISBN: 84-291-7511-3
8. Olaya, Y., Fundamentos para el diseño de biodigestores, Tesis de Maestría, Facultad de Ingeniería y Administración., Universidad Nacional de Colombia. 2009, 2-32, Colombia.
9. Nzila C, Dewulf J, Spanjers H, et al., Biowaste energy potential in Kenya. Renew Energy. 2010, 35, 2698–2704. https://doi.org/10.1016/j.renene. 2010.04.016
10. Varnero, M.T., Manual de biogás, FAO: Santiago, Chile. Proyecto CHI/00/G32 “Chile: Remoción de Barreras para la Electrificación Rural con Energías Renovables”. 2011, 27-48. ISBN 978-95-306892-0
11. CINSET, “En paz con la naturaleza. Diagnóstico de la corporación para la investigación socioeconómica y tecnológica de Colombia”. Revista Avicultores. 1998,41, 24 -27.
12. Odales‐Bernal, L., Schulz, R. K., López González, L., & Barrera, E. L.. Review: Biorefineries at poultry farms: a perspective for sustainable development. Journal of Chemical Technology & Biotechnology, 2020, 1-14. https://doi.org/10.1002/jctb.6609
13. Barrera Sanchez, G.A., Manobanda Lisituña, M. F., Estudio del potencial energético de residuos procedentes de la industria avícola a partir de digestión anaerobia, Tesis de Maestría. 2019, Escuela politécnica nacional: Quito, Ecuador.
14. Dalkilic, K., Ugurlu, A., Biogas production from chicken manure at different organic loading rates in a mesophilic-thermopilic two stage anaerobic system. J. Biosci. Bioeng. 2015, 120 (3), 315–322. http://dx.doi.org/10.1016/j.jbiosc.2015.01.021
15. Nie, H., Jacobi, H. F., Strach, K., Xu, C., Zhou, H., & Liebetrau, J., Mono-fermentation of chicken manure: Ammonia inhibition and recirculation of the digestate. Bioresource technology, 2015, 178, 238-246. https://doi.org/10.1016/j.biortech.2014.09.029
16. Wua, S., Ni, P., Li, J., Sun, H., Wang, Y., Luo, H., Integrated approach to sustain biogas production in anaerobic digestion of chicken manure under recycled utilization of liquid digestate: Dynamics of ammonium accumulation and mitigation control. Bioresource technology. 2016, 205, 75-81. https://doi.org/10.1016/j.biortech.2016.01.021
17. Kalia, V.C., Purohit, H. J., Microbial diversity and genomics in aid of bioenergy. Journal of Industrial Microbiology and Biotechnology, 2008, 35(5), 403-419. https://doi.org /10.1007/s10295-007-0300-y
18. Lee Ch., K.J., Gu Shin S. G., Hwang S. , Monitoring bacterial and archaeal community shifts in a mesophilic anaerobic batch reactor treating a high-strength organic wasterwater. FEMS Microbiology Ecology, 2008, 65(3), 544-554. https://doi.org/10.1111/j.1574-6941.2008.00530.x
19. Li K, L.R., Yu Q, Ma R., Removal of nitrogen from chicken manure anaerobic digestion for enhanced biomethanization. Fuel. 2018, 232, 395-404. https://doi.org/10.1016/j.fuel.2018.05.142
20. Sürmeli R, B.A., Çalli B., Removal and recovery of ammonia from chicken manure. Water Science and Technology. 2017, 75(12), 2811-2817. https://doi.org/10.2166/wst.2017.116
21. Chen Y., C., JJ., Creamer, KS.,Inhibition of anaerobic digestion process: A review. Bioresource Technology. 2008, 99(10), 4044-64. https://doi.org/10.1016/j.biortech.2007.01.057
22. F. Martín Martín, V.S.G., Estudio comparativo entre los combustibles tradicionales y las nuevas tecnologías energéticas para la propulsión de vehículos destinados al transporte, Tesis de Maestría. 2004, Universitat Politécnica de Cataluña: Cataluña, España.
23. Bansal, V., V. Tumwesige, and J.U. Smith, Water for small-scale biogas digesters in sub-Saharan Africa. GCB Bioenergy. 2017, 9, 339–357. https://doi.org/10.1111/gcbb.12339

Published

2021-03-10

How to Cite

Duharte-Rodríguez, W. L., Odales-Bernal, L., Álvarez-Meneses, R. R., González-López, L. M., & Barrera-Cardoso, E. L. (2021). Estimation of the biogas potential from poultry litter. Revista Cubana De Química, 33(1), 54–69. Retrieved from https://cubanaquimica.uo.edu.cu/index.php/cq/article/view/5167

Issue

Section

Artículos