Lignocellulosic biomasses pretreatment: a review of the main analytical methods used in its evaluation

Authors

  • Ana María Espinosa-Negrín Centro de Estudios de Energía y Procesos Industriales (CEEPI), Universidad de Sancti Spíritus “José Martí Pérez”, Sancti Spíritus, Cuba 2Departamento de Licenciatura Química, Facultad de
  • Lisbet Mailin López-González Centro de Estudios de Energía y Procesos Industriales (CEEPI), Universidad de Sancti Spíritus “José Martí Pérez”, Sancti Spíritus, Cuba
  • Neybis Lourdes Casdelo-Gutiérrez Departamento de Licenciatura Química, Facultad de Química y Farmacia. Universidad Central “Marta Abreu” de Las Villas, Villa Clara, Cuba

Keywords:

composition; lignocellulosic biomass; pretreatment; structure.

Abstract

Identifying the type and best lignocellulosic biomass pretreatment conditions for bioconversion processes requires structural and compositional changes evaluating after its application. This paper presents a review of the main methods used for pretreatments evaluation in lignocellulosic biomass, with emphasis in those used to improve biogas production. It is concluded that modern procedures that use techniques such as chromatography for quantification are more accurate, but very expensive and laborious, which is why classical methods, such as Weender and Van Soest for the analysis of structural carbohydrates and lignin, continue to be used, and potentiometry and colorimetry results attractive alternatives in other determinations. The qualitative changes of its components, such as relocation and the way in which they interact, is another important aspect when interpreting results obtained by applying pretreatments.

References

WOICIECHOWSKI, A. L. y otros. “Lignocellulosic biomass: Acid and alkaline pretreatments and their effects on biomass recalcitrance–conventional processing and recent advances”. Bioresource Technology. 2020, 304, 1-9. DOI: https://doi.org/10.2016/j.biortech.2020.122848.

GALBE, M. , WALLBERG, O. “Pretreatment for biorefineries: a review of common methods for efficient utilisation of lignocellulosic materials”. Biotechnology for Biofuels. 2019, 12 (1), 294-320. DOI: https://doi.org/10.1186/s13068-019-1634-1.

BHATIA, S. K. y otros. “Recent developments in pretreatment technologies on lignocellulosic biomass: effect of key parameters, technological improvements, and challenges”. Bioresource Technology. 2020, 300, 1-13. DOI: https://doi.org/10.2016/ j.biortech.2019.122724.

YOO, C. G. y otros. “The critical role of lignin in lignocellulosic biomass conversion and recent pretreatment strategies: a comprehensive review”. Bioresource Technology. 2020, 301, 1-10. DOI: https://doi.org/10.2016/j.biortech.2020.122784.

ABRAHAM, A. y otros. “Pretreatment strategies for enhanced biogas production from lignocellulosic biomass”. Bioresource Technology. 2020, 301, 1-13. DOI: https://doi.org/10.2016/ j.biortech.2019.122725.

KARIMI, K.; TAHERZADEH, M. J. “A critical review of analytical methods in pretreatment of lignocelluloses: composition, imaging, and crystallinity”. Bioresource technology. 2016, 200, 1008-1018. DOI: http://dx.doi.org/10.1016/j.biortech.2015.11.022.

JANKE, L. y otros. “Pre-treatment of filter cake for anaerobic digestion in sugarcane biorefineries: Assessment of batch versus semi-continuous experiments”. Renewable Energy. 2019, 143, 1416-1426. DOI: https://doi.org/10.1016/j.renene.2019.05.029.

DU, J. y otros. “Hydrothermal and alkaline thermal pretreatment at mild temperature in solid state for physicochemical properties and biogas production from anaerobic digestion of rice straw”. Renewable energy. 2019, 139, 261-267. DOI: https://doi.org/10.1016/j.renene.2019.01.097.

LABORATORY., N. R. E. Biomass Compositional Analysis Laboratory Procedures [en línea] [Fecha de consulta: 7 mayo 2021]. Disponible en: www.nrel.gov/bioenergy/biomass-compositional-analysis.html.

SLUITER, J.; SLUITER, A., Summative mass closure. Laboratory Analytical Procedure (LAP): 2010. NREL, NREL/TP-510-48087. Disponible en: www.nrel.gov/docs/gen/fy11/48087.pdf.

ORHORHORO, E. y otros. “Experimental Determination of Effect of Total Solid (TS) and Volatile Solid (VS) on Biogas Yield”. American Journal of Modern Energy. 2017, 3 (6), 131-135. DOI: https://doi.org/10.11648/j.ajme.20170306.13.

RICE, E. W.; BAIRD, R. B.; EATON, A. D. “2540 Solids (2017)”. En: (Eds). "Standard Methods For the Examination of Water and Wastewater". American Public Health Association, 2018. ISBN: 0-87553-235-7. Disponible en: https://www.standardmethods.org/doi/book/10.2105/smww.2882.

WEINRICH, S. Value of Batch Tests for Biogas Potential Analysis: Method Comparison and Challenges of Substrate and Efficiency Evaluation of Biogas Plants. Irlanda: IEA Bioenergy, 2018. ISBN: 978-1-910154-49-6. Disponible en: https://www.ieabioenergy.com/blog/publications/value-of-batch-tests-for-biogas-potential-analysis-method-comparison-and-challenges-of-substrate-and-efficiency-evaluation-of-biogas-plants.

WEISSBACH, F.; STRUBELT, C. “Correcting the dry matter content of sugar beet silages as a substrate for biogas production”. Landtechnik. 2008, 63 (6), 354-355. Disponible en: http://landtechnik-net.com.

ANGELIDAKI, I. y otros. “Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays”. Water science and technology. 2009, 59 (5), 927-934. DOI: https://doi.org/10.2166/wst.2009.040.

SLUITER, A. y otros., Determination of ash in biomass laboratory analytical procedure. Laboratory Analytical Procedure (LAP): 2005. NREL, NREL/TP-510-42622. Disponible en: www.nrel.gov/docs/gen/fy08/42622.pdf.

SLUITER, A. y otros. Determination of structural carbohydrates and lignin in biomass, in: Laboratory Analytical Procedure (LAP). Laboratory Analytical Procedure (LAP): 2008. NREL, NREL/TP-510-42618. Disponible en: www.nrel.gov/docs/gen/fy08/42618.pdf.

RICE, E. W.; BAIRD, R. B.; EATON, A. D. “6200 VOLATILE ORGANIC COMPOUNDS (2017)”. En: (Eds). Standard Methods For the Examination of Water and Wastewater. American Public Health Association, 2018. Disponible en: https://www.standardmethods.org/doi/book/10.2105/smww.2882.

LÓPEZ GONZÁLEZ, L. M. y otros. “Effect of liquid hot water pre-treatment on sugarcane press mud methane yield”. Bioresource Technology. 2014, 169, 284-290. DOI: http://dx.doi.org/10.1016/j.biortech.2014.06.107.

RODRÍGUES, C. I. S.; JACKSON, J. J.; MONTROSS, M. D. “A molar basis comparison of calcium hydroxide, sodium hydroxide, and potassium hydroxide on the pretreatment of switchgrass and miscanthus under high solids conditions”. Industrial Crops and Products. 2016, 92, 165-173. DOI: http://dx.doi.org/10.1016/j.indcrop.2016.08.010.

HAMES, B. R. “Biomass compositional analysis for energy applications”. En: Mielenz, J. R. (Eds). Methods in Molecular Biology. Springer, 2009, vol. 581, pp. 145-167. DOI: https://doi.org/10.1007/978-1-60761-214-8_11.

OKWUNODULU, F.; ONUCHI, M.; NWACHUKWU, M. N. “Comparative studies on the proximate and phytochemical analysis of talinum triangulare as a function of drying techniques”. Journal Of Chemical Society Of Nigeria. 2020, 45 (2), 193-198. Disponible en: https://journals.chemsociety.org.ng/index.php/jcsn/article/view/446/507.

JAIMES, L. J.; GIRALDO, A. M.; CORREA, H. J. “De Parmentier a Van Soest y más allá: un análisis histórico del concepto y métodos de determinación de la fibra en alimentos para rumiantes”. Livestock Research for Rural Development. 2018, 30 (7), 1-9. Disponible en: http://www.lrrd.org/lrrd30/7/hjco30126.html.

PARADA, S. y otros. “Nutritional value of Dasyphyllum diacanthoides (Less.) Carb.: an endemic tree used as suplementary forage in agroforestry systems”. Bioagro. 2020, 32 (2), 139-144. Disponible en: https://revistas.uclave.org/index.php/bioagro/article/view/2698.

CASTILLO RODRÍGUEZ, S. P. y otros. “Análisis proximal y digestibilidad in vitro de la morera (morus nigra).”. Transversalidad científica y tecnológica. 2020, 4 (1), 1-5. Disponible en: www.atictac.org.mx/revista.html.

MALUSHI, N. y otros. “Determination of chemical content and dry matter digestibility of some under- utilized feeds in ruminants feeding through two in vitro methods.”. Scientific Papers. Series D. Animal Science. 2017, 60, 91-96. Disponible en: http://animalsciencejournal.usamv.ro/index.php/scientific-papers/428-determination-of-chemical-content-and-dry-matter-digestibility-of-some-under-utilized-feeds-in-ruminants-feeding-through-two-in-vitro-methods-694.

SHEN, J. y otros. “Co-pretreatment of wheat straw by potassium hydroxide and calcium hydroxide: Methane production, economics, and energy potential analysis”. Journal of environmental management. 2019, 236, 720-726. DOI: https://doi.org/10.1016/j.jenvman.2019.01.046.

ZHOU, J. y otros. “Effect of steam explosion pretreatment on the anaerobic digestion of rice straw”. RSC advances. 2016, 6 (91), 88417-88425. DOI: https://doi.org/ 10.1039/c6ra15330e.

VAN SOEST, P. J.; ROBERTSON, J. B.; LEWIS, B. A. “Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition”. Journal of Dairy Science. 1991, 74 (10), 3583-3597. ISSN: 0022-0302. DOI: https://doi.org/10.3168/jds.S0022-0302(91)78551-2.

JANKE, L. y otros. “Improving anaerobic digestion of sugarcane straw for methane production: Combined benefits of mechanical and sodium hydroxide pretreatment for process designing”. Energy Conversion and Management. 2017, 141, 378-389. DOI: http://dx.doi.org/10.1016/j.enconman.2016.09.083.

JANKE, L. y otros. “Comparison of start-up strategies and process performance during semi-continuous anaerobic digestion of sugarcane filter cake co-digested with bagasse”. Waste Management. 2016, 48, 199-208. DOI: http://dx.doi.org/10.1016/j.wasman.2015.11.007.

YOU, Z. y otros. “Effects of corn stover pretreated with NaOH and CaO on anaerobic co-digestion of swine manure and corn stover”. Applied Sciences. 2019, 9 (1), 123-134. DOI: https://doi.org/ 10.3390/app9010123.

MOKOMELE, T. y otros. “Incorporating anaerobic co-digestion of steam exploded or ammonia fiber expansion pretreated sugarcane residues with manure into a sugarcane-based bioenergy-livestock nexus”. Bioresource technology. 2019, 272, 326-336. DOI: https://doi.org/10.1016/j.biortech.2018.10.049

DAHUNSI, S. O. “Mechanical pretreatment of lignocelluloses for enhanced biogas production: Methane yield prediction from biomass structural components”. Bioresource technology. 2019, 280, 18-26. DOI: https://doi.org/10.1016/j.biortech.2019.02.006.

HAMES, B.; SCARLATA, C.; SLUITER, A. "Determination of protein content in biomass". Laboratory Analytical Procedure (LAP): 2008. NREL, NREL/TP-510-42625. Disponible en: www.nrel.gov/docs/gen/fy08/42625.pdf.

RICE, E. W.; BAIRD, R. B.; EATON, A. D. “4500-N Nitrogen (2017)”. En: (Eds). Standard Methods For the Examination of Water and Wastewater. American Public Health Association, 2018. ISBN: 0-87553-235-7. Disponi

ble en: https://www.standardmethods.org/doi/book/10.2105/smww.2882.

DEAN GOLDRING, J. P. “Measuring Protein Concentration with Absorbance, Lowry, Bradford Coomassie Blue, or the Smith Bicinchoninic Acid Assay Before Electrophoresis”. En: Kurien, B. T., y Scofield, R. H. (Eds). Electrophoretic Separation of Proteins: Methods and Protocols. New York, NY: Springer New York, 2019, vol.1855, pp. 31-39. ISBN: 978-1-4939-8793-1. DOI: https://doi.org/10.1007/978-1-4939-8793-1_3.

SLUITER, A. y otros. "Determination of sugars, byproducts, and degradation products in liquid fraction process samples". Laboratory Analytical Procedure (LAP): 2006. NREL, NREL/TP-510-42623. Disponible en: www.nrel.gov/docs/gen/fy08/42623.pdf.

NOSRATPOUR, M. J.; KARIMI, K.; SADEGHI, M. “Improvement of ethanol and biogas production from sugarcane bagasse using sodium alkaline pretreatments”. Journal of environmental management. 2018, 226, 329-339. https://doi.org/10.1016/j.jenvman.2018.08.058.

AVILA NÚÑEZ, R. y otros. “Contenido de azúcares totales, reductores y no reductores en Agave cocui Trelease”. Multiciencias. 2012, 12 (2), 129-135. Disponible en: http://www.redalyc.org/articulo.oa?id=90424216002.

LÓPEZ-LEGARDA, X. y otros. “Comparación de métodos que utilizan ácido sulfúrico para la determinación de azúcares totales”. Revista Cubana de Química. 2017, 29 (2), 180-198. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttex&pid=S2224-54212017000200002.

BURGOS MONTAÑEZ, L. J. “Cuantificación de azúcares reductores del sustrato en residuos de piña con el método del ácido 3,5-dinitrosalicílico”. Questionar: Investigación Específica. 2020, 7 (1), 57-66. DOI: https://doi.org/10.29097/23461098.308.

SLUITER, A. y otros. "Determination of extractives in biomass". Laboratory Analytical Procedure (LAP): 2005. NREL, NREL/TP-510-42619. Disponible en: www.nrel.gov/docs/gen/fy08/42619.pdf.

BURKHARDT, S. y otros. “How effective are traditional methods of compositional analysis in providing an accurate material balance for a range of softwood derived residues?”. Biotechnology for biofuels. 2013, 6 (90), 1-10. Disponible en: http://www.biotechnologyforbiofuels.com/content/6/1/90.

MOORE, S. A. y otros. “Effects of alpha-amylase reaction mechanisms on analysis of resistant-starch contents”. Carbohydrate polymers. 2015, 115, 465-471. DOI: https://doi.org/10.1016/j.carbpol.2014.09.014.

RICE, E. W.; BAIRD, R. B.; EATON, A. D. “5220 Chemical Oxygen Demand (COD) (2017)”. En: (Eds). Standard Methods For the Examination of Water and Wastewater. American Public Health Association, 2018. Disponible en: https://www.standardmethods.org/doi/book/10.2105/smww.2882.

LIEBETRAU, J.; PFEIFFER, D.; THRÄN, D. “Collection of Methods for Biogas: Methods to determine parameters for analysis purposes and parameters that describe processes in the biogas sector”. Biomass Energy Use. 2016, 7, 1-107. Disponible en: https://energetische-biomassenutzung.de/en/publications/series-biomass-energy-use/07-collection-of-measurement-methods-for-biogas-2.

GARROTE, G.; DOMINGUEZ, H.; PARAJO, J. “Hydrothermal processing of lignocellulosic materials”. Holz als Roh-und Werkstoff. 1999, 57 (3), 191-202. DOI: https://doi.org/10.1007/s001070050039.

JANKE, L. y otros. “Optimization of hydrolysis and volatile fatty acids production from sugarcane filter cake: Effects of urea supplementation and sodium hydroxide pretreatment”. Bioresource Technology. 2016, 199, 235-244. DOI: http://dx.doi.org/10.1016/j.biortech.2015.07.117.

LÓPEZ GONZÁLEZ, L. M. "Análisis de alternativas de Producción Más Limpias (PML) para la producción de biogás con fines energéticos en una empresa azucarera diversificada", in Departamento de Ingeniería Química. Tesis de Doctorado. Universidad Central "Marta Abreu de Las Villas", Santa Clara, Cuba, 2016. Disponible en: https://books.google.com.cu/books?id=WjK0tAEACAAJ.

XIN, L. y otros. “Feasibility of anaerobic digestion on the release of biogas and heavy metals from rice straw pretreated with sodium hydroxide”. Environmental Science and Pollution Research. 2019, 26 (19), 19434-19444. DOI: https://doi.org/10.1007/s11356-019-05195-x.

GUAN, R. y otros. “Enhancing anaerobic digestion performance and degradation of lignocellulosic components of rice straw by combined biological and chemical pretreatment”. Science of the Total Environment. 2018, 637, 9-17. DOI: https://doi.org/10.1016/j.scitotenv.2018.04.366.

CHATTERJEE, B.; RADHAKRISHNAN, L.; MAZUMDER, D. “New approach for determination of volatile fatty acid in anaerobic digester sample”. Environmental Engineering Science. 2018, 35 (4), 333-351. DOI: https://doi.org/10.1089/ees.2017.0190.

HUAMÁN CASTILLA, N. y otros. “Uso de edulcorantes comerciales como una alternativa a la reducción de 5-Hidroximetil-2- Furfural (HMF) en galletas modelo”. Revista de la Sociedad Química del Perú. 2017, 83 (2), 213-220. DOI: https://doi.org/10.37761/rsqp.v83i2.199.

DE ANDRADE, J. K. y otros. “A validated fast difference spectrophotometric method for 5-hydroxymethyl-2-furfural (HMF) determination in corn syrups”. Food chemistry. 2017, 228, 197-203. DOI: https://doi.org/10.1016/j.foodchem.2017.01.158.

ZHANG, H. y otros. “Determination of Furfural and Hydroxymethyl furfural by UV Spectroscopy in ethanol-water hydrolysate of Reed”. Journal of Bioresources and Bioproducts. 2017, 2 (4), 170-174. DOI: https://doi.org/10.21967/jbb.v2i4.84.

HERNÁNDEZ GÓMEZ, D. Contenido en polifenoles de subproductos agrícolas y agroindustriales de la Vega Baja del Segura. 2019, Universidad Miguel Hernández de Elche: España. Disponible en: http://dspace.umh.es/handle/11000/5379.

NOSSA GONZÁLEZ, D. L. y otros. “Determinación del contenido de polifenoles y actividad antioxidante de los extractos polares de comfrey (Symphytum officinale L)”. Revista Cubana de Plantas Medicinales. 2016, 21 (2), 125-132. Disponible: https://revplantasmedicinales.sld.cu/index.php/pla/article/view/296

OSTOVAREH, S.; KARIMI, K.; ZAMANI, A. “Efficient conversion of sweet sorghum stalks to biogas and ethanol using organosolv pretreatment”. Industrial Crops and Products. 2015, 66, 170-177. DOI://doi.org/10.2016/j.indcrop.2014.12.023.

Published

2022-02-21

How to Cite

Espinosa-Negrín, A. M. ., López-González, L. M. ., & Casdelo-Gutiérrez, N. L. . (2022). Lignocellulosic biomasses pretreatment: a review of the main analytical methods used in its evaluation. Revista Cubana De Química, 34(1), 87–110. Retrieved from https://cubanaquimica.uo.edu.cu/index.php/cq/article/view/5210

Issue

Section

Artículos