Strontium stannate as an alternative anode for alkali-ion batteries

Authors

  • Juan Carlos Donatién-Caballeros Departamento de Física, Facultad de Ciencias Naturales y Exactas, Universidad de Oriente, Santiago de Cuba, Cuba
  • Rafael Francisco Mut-Benítez Departamento de Física Aplicada, Facultad de Ciencias Naturales y Exactas, Universidad de Oriente, Santiago de Cuba, Cuba
  • Yohandys A. Zulueta Departamento de Física, Facultad de Ciencias Naturales y Exactas, Universidad de Oriente, Santiago de Cuba, Cuba
  • Minh Tho-Nguyen Institute for Computational Science and Technology (ICST), Ho Chi Minh City, Vietnam

Keywords:

SrSnO3; Li-ion battery; alkali-ion battery; atomistic simulations; Li-ion migration.

Abstract

In this work, the structural, electronic and transport properties of SrSnO3 are explored
using density functional theory and forcefield-based simulations. The results of
structural and electronic properties are in line with the experiments. Results on alkali
ion transport properties reveal lower diffusion activation energies of 0,25; 0,28 and
0,44 eV and diffusion coefficient at ambient temperature of 9,6 × 10-11; 2,9 × 10-11 and
4,8 × 10-13 cm2s-1 for Li-, Na- and K-doped samples, respectively. These predicted
properties provides new evidence to consider SrSnO3 for use as an alternative anode,
in particular for both Na- and K-ion batteries.

References

AHNIYAZ, A. et al. “Progress in Solid-State High Voltage Lithium-Ion Battery Electrolytes.” Advances in Applied Energy. 19, 2021, 100070. ISSN 2666-7924.

ZHANG, Y.; SAHOO, M. P. K.; WANG, J. “Tuning the Band Gap and Polarization of BaSnO3/SrSnO3 Superlattices for Photovoltaic Applications.” Phys. Chem. Chem. Phys. 2017, 19 (10), 7032–7039. ISSN 1463-9076.

WEI, M.; SANCHELA, A. V.; FENG, B.; IKUHARA, Y.; CHO, H. J.; OHTA, H. “High Electrical Conducting Deep-Ultraviolet-Transparent Oxide Semiconductor La-Doped SrSnO3 Exceeding ∼3000 S cm-1”. Appl. Phys. Lett. 2020, 116 (2), 022103. ISSN 0003-6951.

ZULUETA, Y. A.; NGUYEN, M. T.; PHAM-HO, M. P. “Strontium Stannate as an Alternative Anode for Na- and K-Ion Batteries: A Theoretical Study.” J. Phys. Chem. Solids 2022, 162, 110505. ISSN 0022-3697.

ZULUETA, Y. A.; MUT, R.; KAYA, S.; DAWSON, J. A.; NGUYEN, M. T. “Strontium Stannate as an Alternative Anode Material for Li-Ion Batteries.” J. Phys. Chem. C 2021, 125 (27), 14947–14956. ISSN 1932-7455.

LI, C.; ZHU, Y.; FANG, S.; WANG, H.; GUI, Y.; BI, L.; CHEN, R. “Preparation and Characterization of SrSnO3 Nanorods.” J. Phys. Chem. Solids 2011, 72 (7), 869–874. ISSN 0022-3697.

HU, X.; TANG, Y.; XIAO, T.; JIANG, J.; JIA, Z.; LI, D.; LI, B.; LUO, L. “Rapid Synthesis of Single-Crystalline SrSn(OH)6 Nanowires and the Performance of SrSnO3 Nanorods Used as Anode Materials for Li-Ion Battery.” J. Phys. Chem. C 2010, 114 (2), 947–952. ISSN 1932-7447.

WHITTINGHAM, M. S. “Lithium Batteries and Cathode Materials.” Chem. Rev. 2004, 104, 4271–4301. ISSN 0009-2665.

DE FREITAS, S. M.; JÚNIOR, G. J. B.; SANTOS, R. D. S.; REZENDE, M. V. DO. S. “Defects and Dopant Properties of SrSnO3 Compound: A Computational Study.” Comput. Condens. Matter 2019, 21, e00411. ISSN 2352-2143.

DE FREITAS, S. M.; DOS SANTOS, P. C. L.; REZENDE, M. V. DO. S. “Investigation of Dopant Incorporation at SrSnO3 Compound.” J. Solid State Chem. 2019, 279, 120928. ISSN 1095-726X.

SHEIN, I. R.; KOZHEVNIKOV, V. L.; IVANOVSKII, A. L. “First-Principles Calculations of the Elastic and Electronic Properties of the Cubic Perovskites SrMO3 (M = Ti, V, Zr and Nb) in Comparison with SrSnO3.” Solid State Sci. 2008, 10, 217–225. ISSN 1293-2558.

ZHENG, J.; WU, Y.; SUN, Y.; RONG, J.; NIU, H.; LI, L. “Advanced Anode Materials of Potassium Ion Batteries: From Zero Dimension to Three Dimensions.” Nano-Micro Letters. 2021, 13 (1), 1–39. ISSN 2150-5551.

ZHENG, S. M. et al. “Alloy Anodes for Sodium-Ion Batteries.” Rare Met. 2021, 40 (2), 272–289. ISSN 1867-7185.

PAYNE, M. C.; TETER, M. P.; ALLAN, D. C.; ARIAS, T. A.; JOANNOPOULOS, J. D. “Iterative Minimization Techniques for Ab initio Total-energy Calculations: Molecular Dynamics and Conjugate Gradients.” Rev. Mod. Phys. 1992, 64, 1045−1097. ISSN 0034-6861.

PLIMPTON, S. “Fast Parallel Algorithms for Short-range Molecular Dynamics.” J. Comput. Phys. 1995, 117, 1–19. ISSN 0021-9991.

RAMASAMY, H. V.; SENTHILKUMAR, B.; BARPANDA, P.; LEE, Y. “Superior Potassium-Ion Hybrid Capacitor Based on Novel P3-Type Layered.” Chem. Eng. J. 2019, 368, 235–243. ISSN 1385-8947.

WU, X.; KANG, F.; DUAN, W.; LI, J. “Density Functional Theory Calculations: A Powerful Tool to Simulate and Design High-Performance Energy Storage and Conversion Materials.” Prog. Nat. Sci. Mater. Int. 2019, 29 (3), 247–255. ISSN 1745-5391.

JAMES ABRAHAM, J. et al. “Sodium and Lithium Incorporated Cathode Materials for Energy Storage Applications - A Focused Review.” J. Power Sources 2021, 506, 230098. ISSN 03787753.

Published

2023-01-17

How to Cite

Donatién-Caballeros, J. C. ., Mut-Benítez, R. F. ., Zulueta, Y. A. ., & Tho-Nguyen, M. . (2023). Strontium stannate as an alternative anode for alkali-ion batteries. Revista Cubana De Química, 35(1), 3–13. Retrieved from https://cubanaquimica.uo.edu.cu/index.php/cq/article/view/5291

Issue

Section

Artículos

Most read articles by the same author(s)