Chemical nature of glass and its impact on society


  • Armando A. Paneque-Quevedo Laboratorio de Bioinorgánica, Departamento de Química General e Inorgánica, Facultad de Química, Universidad de La Habana, La Habana, Cuba
  • Alicia M. Díaz-García Laboratorio de Bioinorgánica, Departamento de Química General e Inorgánica, Facultad de Química, Universidad de La Habana, La Habana, Cuba
  • Noeldris López-López Laboratorio de Bioinorgánica, Departamento de Química General e Inorgánica, Facultad de Química, Universidad de La Habana, La Habana, Cuba


glass; silicon dioxide; crystalline structure; amorphous solid; recycling.


The Glass generally have silicon dioxide as their forming oxide, which is accompanied by other metallic oxides that allow them to be brightened, transparent, chemically stable, insoluble in water, and colored. It is the most versatile material invented by man that exists and stands out among other materials because it can be infinitely recycled, allowing the saving of natural resources, energy and costs. It has historically played important roles in architecture, automotive, home furnishings and packaging. Today it is an essential element in key sectors such as energy, biomedicine, agriculture, electronics, telecommunications, optics and aerospace. This work joins the efforts of the United Nations and the international scientific community to declare 2022 "International Year of Glass", a commemoration that celebrates the past, present and future of the most transformative material in the history of humanity.


Fernández Navarro, J. M. El Vidrio. 3ra ed. Madrid: Consejo Superior de Investigaciones Científicas, Fundación Centro Nacional del Vidrio, 2003. ISBN 10 8400071301.

Ballato, J., et al. “Ulrich Fotheringham, Mathieu Hubert, Stefan Nolte, LaeticiaPetit, and Kathleen A. Richardson, "Celebrating Optical Glass – the International Year of Glass: feature issue introduction”, Opt. Mater. Express 2022, 12, 4660-4664.

Nielsen, J. H., Belis, J., Louter, C., Overend, M., and Schneider, J. “Celebrating the international year of glass”, Glass Struct. Eng. 2022, 7 (1), 1. doi:10.1007/s40940-022-00173-1

María Luisa López García y Rubén Miranda Carreño. El año del vidrio: un material básico, tecnológico y sostenible. [fecha de consulta: 20 de Septiembre de 2022]. Disponible en: Disponible en: y exposiciones- itinerantes/vidrio-presente-y-futuro

Chen, J., et al. “Generation of Shock Lamellae and Melting In Rocks By Lightning-Induced Shock Waves And Electrical Heating”. Geophysical Research Letters, 2017, 44 (17) 8757-8768.∕10.1002/2017gl073843

Wadsworth, F.B., et al “Using obsidian in glass art practice”, Volcánica, 2022, 5(1), 183-207.

Díaz Serrano A., Sobre la industria del vidrio según Plinio el viejo. [fecha de consulta: 10 de Agosto de 2022]. Disponible en:

Gateau, J.Ch., “El vidrio”. Colección Oficios Artísticos, Ediciones R. Torres, Barcelona, 1976. ISBN: 8485174062

Conradt R., “Prospects and physical limits of processes and technologies in glass meltin”, J Asian Ceram Soc. 2019, 7, 377–96.

Glassware in the Victorian Era. [fecha de consulta: 20 de Septiembre de 2022]. Disponible en:

Picart, G., Historia de los vitrales cubanos. [fecha de consulta: 10 de Agosto de 2022]. Disponible en: y Cosas que no conocías de la Cervecería La Tropical [fecha de consulta: 15 de Septiembre de 2022]. Disponible en:

Rodríguez-Búa C., Memorias de un cubano. [fecha de consulta: 20 de Septiembre de 2022]. Disponible en:

Empresa Vidrios Técnicos VITEC. fecha de consulta: 8 de Septiembre de 2022]. Disponible en:

Vidrios Mariel S.A. [fecha de consulta: 18 de Septiembre de 2022]. Disponible en:

Bender, J., Hellerstein, J., Hadley, J.G. y Hohman, C. “Vidrio, Cerámica y Materiales afines”. En: Editor:Instituto Nacional de Seguridad e Higiene en el Trabajo. Enciclopedia de Salud y Seguridad en el Trabajo, 1998, Cap. 84, pp. 84.2. [fecha de consulta: 4 de agosto de 2022]. Disponible en:

Onodera et al. “Structure and properties of densified silica glass: characterizing the order within disorder”, NPG Asia Materials 2020, 12, 85.

Vedishcheva, N, López-Grande, A, Muñoz, F. “Chemical approach to the glass structure and properties”,Int J Appl Glass Sci. 2022, 13, 359-369.

Kurkjian, C.R. y Prindle, W.R. “Perspectives on the History of Glass Composition”, J. Am. Ceram. Soc. 1998, 81 (4), 795–813. tb02415x

Hoang, V. V. “Molecular dynamics simulation of amorphous SiO2 nanoparticles”, J.Phys. Chem. B. 2007, 111, 12649-12656.

Kolb, D., and Kolb K.E., “The chemistry of glass”, J. Chem. Educ.1979, 56, 9,

Kohara, S. et al. “Synchrotron x-ray scattering measurements of disordered materials”, Z. Phys. Chem. 2016, 230, 339–368.

Chumakov, A. I. et al. “Role of disorder in the thermodynamics and atomic dynamics of glasses”, Phys. Rev. Lett. 2014, 112, 025502. doi:10.1103/PhysRevLett.112.025502.

Vienna, J.D., Neeway, J.J., Ryan, J.V. et al. “Impacts of glass composition, pH, and temperature on glass forward dissolution rate”, npj Mater Degrad 2018, 2, 22.

Chumakov, A. I. & Monaco, G. “Understanding the atomic dynamics and thermodynamics of glasses: status and outlook”, J. Non-Cryst. Solids 2015, 407, 126–132. doi: 10.1016/j.jnoncrysol.2014.09.031

Jones,E.B., and Stevanović, V., “The glassy solid as a statistical ensemble of crystalline microstates”, npj Computational Materials 2020, 6, 56.

Schultz, PC. “Optical absorption of the transition elements in vitreous silica. J Am Ceram. Soc. 1974; 57(7):309 13.

Conradt, R., Thermodynamics and Kinetics of Glass. In: Musgraves, J.D., Hu, J., Calvez, L. (eds) Springer Handbook of Glass. SpringerHandbooks. Springer, Cham., 2019.

Hubert M., Industrial glass processing and fabrication. In: Musgraves JD, Hu J, C L, editors. Springer handbook of glass. Springer Cham; 2019. 29. Pawar P., Ballav R., Kumar A. “Review on Material Removal Technology of Soda-Lime Glass Material”, Indian Journal of Science and Technology2017, 10(8), 1-7. doi: 10.17485/ijst/2017/v10i8/102698.

Kail, F. et al. “The configurational energy gap between amorphous and crystalline silicon”, Phys. Status Solidi Rapid Res. Lett. 2011, 5, 361-363.

Rodríguez-Carvajal, D.A., Fabricación y Caracterización de Vidrios del Sistema Na2O-Ce2O3-GeO2. Tesis de maestría en Ciencias de Materiales. Centro de investigación en materiales avanzados, Chihuahua, 2013. [fecha de consulta: 4 de agosto de 2022]. Disponible en:

Tecnoglass, Vidrio laminado Información General, [fecha de consulta: 4 de agosto de 2022]. Disponible en:

Datsiou, K.C., Overend, M. “The mechanical response of cold bent monolithic glass plates during the bending process”, Engineering Structures, 2016, 117, 575-590.

Cannio, M.; Bellucci, D.; Roether, J.A.; Boccaccini, D.N. and Cannillo, V. “Bioactive Glass Applications: A Literature Review of Human Clinical Trials”, Materials. 2021, 14, 5440.

Sengupta P., Refractories for glass manufacturing. In: Refractories for the chemical industries. Springer Cham; 2020. 61240-5_10

Shelby, J., Introduction to glass science and technology: 2da ed. Royal Society of Chemistry y Cambridge, 2015. ISBN: 9781782625117

Testa, M., Malandrino, O., Sessa, M., Supino, S., Sica, D. “Long-Term Sustainability from the Perspective of Cullet Recycling in the Container Glass Industry: Evidence from Italy”, Sustainability, 2017, 9(10), 1752.

de Araújo, C. B., KassabL.R.P., da Silva D.M., “Optical properties of glasses and glass-ceramics for optical amplifiers, photovoltaic devices, color displays, optical limiters, and Random Lasers”, Optical Materials 2002, 131, 112648.

Tamanna, et al. “Performance of recycled waste glass sand as partial replacement of sand in concrete. Construction and Building Materials 239 (2020) 117804.

Zuidhof, N., Ben Allouch, S., Peters, O. et al. “Defining Smart Glasses: A Rapid Review of State-of-the-Art Perspectives and Future Challenges From a Social Sciences’ Perspective”, Augment Hum Res 2021, 6, 15.

Parker, M.J., and Durán, A., “Glass, optics and IYOG: opinion”, Optical Materials Express2022,12, 8, 2938-294.

Edwards, K.L.; Axinte, E.; Tabacaru, L.L. “A critical study of the emergence of glass and glassy metals as “green” materials”, Mater Des. 2013, 50.

Stiebert, S.; Echeverría, D.; Gass, P. “Emission Omissions: carbon accounting gaps in the built environment”. 2019. [fecha de consulta: 11 de septiembre de 2022]. Disponible en: omissions#=:text=Emission Omissions%3A Carbon Accounting Gaps in the Built Environment delves,The report considers%3A&text=Longer-term opportunities to reduce,concrete%2C steel and forestry sectors.

Busca, G., “Bases and Basic Materials in Industrial and Environmental Chemistry: A Review of Commercial Processes”,Industrial& Engineering Chemistry Research2009, 48(14), 6486-6511.

Boyd, D.C., et al. “Glass”, in ‘Kirk–Othmer. Encyclopedia of Chemical Technology’, 5th edn. Hoboken, Wiley, 2005, 565–626. ISBN: 978-0-471-48494-3.

Ibrahim, N.F., et al. “Development of New Composition of Bioactive Glass Powder from SiO2-CaO-Na2O-P2O5 System through Melt-Derived Route”Materials Science Forum2017, 888, 267-272.

Schaut, RA, Weeks WP. “Historical review of glasses used for parenteral packaging”, PDA journal of pharmaceutical science and technology 2017, 71(4), 279-96. doi: 10.5731/pdajpst.2016.007377

Guadagnino, E., Guglielmi, M, Nicoletti, F. “Glass: The best material for pharmaceutical packaging”,Int J Appl Glass Sci. 2022; 13: 281-291.

Moeini, A, HassanzadehChinijani, T, MalekKhachatourian, A, ViniciusLiaFook, M, Baino, F, Montazerian, M. “A critical review of bioactive glasses and glass–ceramics in cancer therapy”,Int J Appl Glass Sci. 2023, 14, 69-87.



How to Cite

Paneque-Quevedo, A. A. ., Díaz-García, A. M., & López-López, N. . (2023). Chemical nature of glass and its impact on society. Revista Cubana De Química, 35(1), 105–124. Retrieved from




Most read articles by the same author(s)