Theoretical predictions of alkali hexazirconate (A2Zr6O13, A= Li, Na, and K) as candidates for alkali ion batteries
Keywords:
batería de iones alcalinos; simulaciones atomísticas; propiedades estructurales; band papAbstract
La transición completa a fuentes de energía renovable está limitada por su generación de
energía intermitente. La batería proporciona la portabilidad de la energía química almacenada con la capacidad de entregarla como energía eléctrica con una alta eficiencia de conversión. Los óxidos basados en la familia Andersson-Wadsley han recibido una creciente atención en su uso como ánodo de batería, debido a que presenta una estructura tipo túnel que favorece el transporte iónico. Las propiedades estructurales, electrónicas y mecánicas del Li2Zr6O13 y de los materiales desconocidos Na2Zr6O13 y K2Zr6O13 se evaluaron mediante simulaciones clásicas y cálculos DFT. El análisis de la estructura de banda electrónica señala el carácter aislante de Li2Zr6O13 y Na2Zr6O13 y el carácter semiconductor del K2Zr6O13. La reacción de intercambio iónico de Li/K, Li/Na y K/Na es energéticamente favorable para la síntesis de los materiales desconocidos K2Zr6O13 y Na2Zr6O13, respectivamente, por lo que estos compuestos pueden recomendarse como material alternativo para el almacenamiento de energía en baterías de iones.
References
Saiful Islam, M.; J. Fisher, C. A. Lithium and Sodium Battery Cathode Materials:
Computational Insights into Voltage, Diffusion and Nanostructural Properties. Chemical
Society Reviews 2014, 43 (1), 185–204. https://doi.org/10.1039/C3CS60199D.
Whittingham, M. S. Lithium Batteries and Cathode Materials. Chem. Rev. 2004, 104
(10), 4271–4302. https://doi.org/10.1021/cr020731c.
Ellis, B. L.; Lee, K. T.; Nazar, L. F. Positive Electrode Materials for Li-Ion and Li-
Batteries †. Chem. Mater. 2010, 22 (3), 691–714. https://doi.org/10.1021/cm902696j.
Deng, D. Li-Ion Batteries: Basics, Progress, and Challenges. Energy Sci Eng 2015, 3 (5),
–418. https://doi.org/10.1002/ese3.95.
Andersson, S.; Wadsley, A. D. The Structures of Na2Ti6O13 and Rb2Ti6O13 and the Alkali
Metal Titanates. Acta Crystallographica 1962, 15 (3), 194–201.
https://doi.org/10.1107/S0365110X62000511.
Dominko, R.; Dupont, L.; Gaberšček, M.; Jamnik, J.; Baudrin, E. Alkali Hexatitanates—
A2Ti6O13 (A=Na, K) as Host Structure for Reversible Lithium Insertion. Journal of
Power Sources 2007, 174 (2), 1172–1176. https://doi.org/10.1016/j.jpowsour.
06.181.
Zulueta, Y. A.; Geerlings, P.; Tielens, F.; Nguyen, M. T. Lithium- and Sodium-Ion
Transport Properties of Li2Ti6O13, Na2Ti6O13 and Li2Sn6O13. Journal of Solid State
Chemistry 2019, 279, 120930. https://doi.org/10.1016/j.jssc.2019.120930.
Fernández-Gamboa, J. R.; Tielens, F.; Zulueta, Y. A. Theoretical Study of Li2Ti6O13,
Li2Sn6O13 and Li2Zr6O13 as Possible Cathode in Li-Ion Batteries. Materials Science in
Semiconductor Processing 2022, 152, 107074. https://doi.org/10.1016/j.mssp.2022.1070
Simalaotao, K.; Thanasarnsurapong, T.; Maluangnont, T.; Phacheerak, K.; Boonchun, A.
Elastic Properties of A2Ti6O13 ( H, Li, Na, K and Rb): A Computational Study. J. Phys.
D: Appl. Phys. 2023, 56 (38), 385303. https://doi.org/10.1088/1361-6463/acd790
Kataoka, K.; Awaka, J.; Kijima, N.; Hayakawa, H.; Ohshima, K.; Akimoto, J. Ion-
Exchange Synthesis, Crystal Structure, and Electrochemical Properties of Li2Ti6O13.
Chem. Mater. 2011, 23 (9), 2344–2352. https://doi.org/10.1021/cm103678e.
Peréz-Flores, J. C.; Kuhn, A.; Alvarado, F. G.-. A Comparative Electrochemical Study of
Li2Ti6O13 and Na2Ti6O13. Meet. Abstr. 2010, MA2010-03 (1), 280.
https://doi.org/10.1149/MA2010-03/1/280.
Flores, J. C. P.; Hoelzel, M.; Kuhn, A.; Alvarado, F. G. On the Mechanism of Lithium
Insertion into A2Ti6O13 (A = Na, Li). ECS Trans. 2012, 41 (41), 195.
https://doi.org/10.1149/1.4717977.
Pérez-Flores, J. C.; Kuhn, A.; García-Alvarado, F. Synthesis, Structure and
Electrochemical Li Insertion Behaviour of Li2Ti6O13 with the Na2Ti6O13 Tunnel-
Structure. Journal of Power Sources 2011, 196 (3), 1378–1385.
https://doi.org/10.1016/j.jpowsour.2010.08.106.
Pérez-Flores, C. J.; Kuhn, A.; García-Alvarado, F. A Structural and Electrochemical
Study of Li2Ti6O13. MRS Online Proceedings Library 2011, 1313 (1), 8.
https://doi.org/10.1557/opl.2011.1390.
Pérez-Flores, J. C.; Baehtz, C.; Hoelzel, M.; Kuhn, A.; García-Alvarado, F. Full
Structural and Electrochemical Characterization of Li2Ti6O13 as Anode for Li-Ion
Batteries. Phys. Chem. Chem. Phys. 2012, 14 (8), 2892.
https://doi.org/10.1039/c2cp23741e.
Kraytsberg, A.; Ein-Eli, . Higher, tronger, Better A Review of 5 Volt Cathode
Materials for Advanced Lithium-Ion Batteries. Advanced Energy Materials 2012, 2 (8),
–939. https://doi.org/10.1002/aenm.201200068.
Van der Ven, A.; Deng, Z.; Banerjee, S.; Ong, S. P. Rechargeable Alkali-Ion Battery
Materials: Theory and Computation. Chem. Rev. 2020, 120 (14), 6977–7019.
https://doi.org/10.1021/acs.chemrev.9b00601.
Zulueta, Y. A.; Nguyen, M. T. Lithium Hexastannate: A Potential Material for Energy
Storage. physica status solidi (b) 2018, 255 (7), 1700669.
https://doi.org/10.1002/pssb.201700669.
Clark, S. J.; Segall, M. D.; Pickard, C. J.; Hasnip, P. J.; Probert, M. I. J.; Refson, K.;
Payne, M. C. First Principles Methods Using CASTEP. Zeitschrift für Kristallographie -
Crystalline Materials 2005, 220 (5–6), 567–570.
https://doi.org/10.1524/zkri.220.5.567.65075.
Perdew, J. P.; Ruzsinszky, A.; Csonka, G. I.; Vydrov, O. A.; Scuseria, G. E.; Constantin,
L. A.; Zhou, X.; Burke, K. Restoring the Density-Gradient Expansion for Exchange in
Solids and Surfaces. Phys. Rev. Lett. 2008, 100 (13), 136406.
https://doi.org/10.1103/PhysRevLett.100.136406.
Pfrommer, B. G.; Côté, M.; Louie, S. G.; Cohen, M. L. Relaxation of Crystals with the
Quasi-Newton Method. Journal of Computational Physics 1997, 131 (1), 233–240.
https://doi.org/10.1006/jcph.1996.5612.
D. Gale, J. GULP: A Computer Program for the Symmetry-Adapted Simulation of
Solids. Journal of the Chemical Society, Faraday Transactions 1997, 93 (4), 629–637.
https://doi.org/10.1039/A606455H.
Zulueta, Y. A.; Dawson, J. A.; Froeyen, M.; Nguyen, M. T. Structural Properties and
Mechanical Stability of Monoclinic Lithium Disilicate: Structural Properties of
Monoclinic Lithium Disilicate. Phys. Status Solidi B 2017, 254 (10), 1700108.
https://doi.org/10.1002/pssb.201700108.
Zulueta, Y. A.; Froeyen, M.; Nguyen, M. T. Structural Properties and Mechanical
Stability of Lithium-Ion Based Materials. A Theoretical Study. Computational Materials
Science 2017, 136, 271–279. https://doi.org/10.1016/j.commatsci.2017.04.033.
Zulueta, Y. A.; Geerlings, P.; Tielens, F.; Nguyen, M. T. Influence of Oxygen–Sulfur
Exchange on the Structural, Electronic, and Stability Properties of Alkali Hexastannates.
J. Phys. Chem. C 2019, 123 (40), 24375–24382.
https://doi.org/10.1021/acs.jpcc.9b06295.
Schlüter, M.; Sham, L. J. Density-Functional Theory of the Band Gap. In Advances in
Quantum Chemistry; Löwdin, P.-O., Ed.; Density Functional Theory of Many-Fermion
Systems; Academic Press, 1990; Vol. 21, pp 97–112. https://doi.org/10.1016/S0065-
(08)60593-6.
Perdew, J. P. Density Functional Theory and the Band Gap Problem. Int. J. Quantum
Chem. 2009, 28 (S19), 497–523. https://doi.org/10.1002/qua.560280846.
Zulueta Leyva, Y. A.; Nguyen, M. T. Implications of Oxygen–Sulfur Exchange on
tructural, Electronic Properties, and tability of Alkali‐Metal Hexatitanates. Phys.
Status Solidi B 2019, 256 (8), 1800568. https://doi.org/10.1002/pssb.201800568.
Medvedev, M. G.; Bushmarinov, I. S.; Sun, J.; Perdew, J. P.; Lyssenko, K. A. Density
Functional Theory Is Straying from the Path toward the Exact Functional. Science 2017,
(6320), 49–52. https://doi.org/10.1126/science.aah5975.
Bartel, C. J. Review of Computational Approaches to Predict the Thermodynamic
Stability of Inorganic Solids. J Mater Sci 2022, 57 (23), 10475–10498.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 J.R. Fernández-Gamboa, Yohandys A.-Zulueta, My Phuong Pham-Ho, Frederick Tielens, Minh Tho Nguyen
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
This journal provides immediate open access to its content, based on the principle that offering the public free access to research helps a greater global exchange of knowledge. Each author is responsible for the content of each of their articles.