Theoretical predictions of alkali hexazirconate (A2Zr6O13, A= Li, Na, and K) as candidates for alkali ion batteries

Authors

  • J.R. Fernández-Gamboa Departamento de Física, Facultad de Ciencias Naturales y Exactas, Universidad de Oriente, Santiago de Cuba, Cuba
  • Yohandys A.-Zulueta Departamento de Física, Facultad de Ciencias Naturales y Exactas, Universidad de Oriente, Santiago de Cuba, Cuba
  • My Phuong Pham-Ho Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), Vietnam
  • Frederick Tielens General Chemistry (ALGC)–Materials Modelling Group, Vrije Universiteit Brussel, Belgium
  • Minh Tho Nguyen Laboratory for Chemical Computation and Modeling, Institute for Computational Science and Artificial Intelligence, Van Lang University, Vietnam

Keywords:

batería de iones alcalinos; simulaciones atomísticas; propiedades estructurales; band pap

Abstract

La transición completa a fuentes de energía renovable está limitada por su generación de
energía intermitente. La batería proporciona la portabilidad de la energía química almacenada con la capacidad de entregarla como energía eléctrica con una alta eficiencia de conversión. Los óxidos basados en la familia Andersson-Wadsley han recibido una creciente atención en su uso como ánodo de batería, debido a que presenta una estructura tipo túnel que favorece el transporte iónico. Las propiedades estructurales, electrónicas y mecánicas del Li2Zr6O13 y de los materiales desconocidos Na2Zr6O13 y K2Zr6O13 se evaluaron mediante simulaciones clásicas y cálculos DFT. El análisis de la estructura de banda electrónica señala el carácter aislante de Li2Zr6O13 y Na2Zr6O13 y el carácter semiconductor del K2Zr6O13. La reacción de intercambio iónico de Li/K, Li/Na y K/Na es energéticamente favorable para la síntesis de los materiales desconocidos K2Zr6O13 y Na2Zr6O13, respectivamente, por lo que estos compuestos pueden recomendarse como material alternativo para el almacenamiento de energía en baterías de iones.

References

Saiful Islam, M.; J. Fisher, C. A. Lithium and Sodium Battery Cathode Materials:

Computational Insights into Voltage, Diffusion and Nanostructural Properties. Chemical

Society Reviews 2014, 43 (1), 185–204. https://doi.org/10.1039/C3CS60199D.

Whittingham, M. S. Lithium Batteries and Cathode Materials. Chem. Rev. 2004, 104

(10), 4271–4302. https://doi.org/10.1021/cr020731c.

Ellis, B. L.; Lee, K. T.; Nazar, L. F. Positive Electrode Materials for Li-Ion and Li-

Batteries †. Chem. Mater. 2010, 22 (3), 691–714. https://doi.org/10.1021/cm902696j.

Deng, D. Li-Ion Batteries: Basics, Progress, and Challenges. Energy Sci Eng 2015, 3 (5),

–418. https://doi.org/10.1002/ese3.95.

Andersson, S.; Wadsley, A. D. The Structures of Na2Ti6O13 and Rb2Ti6O13 and the Alkali

Metal Titanates. Acta Crystallographica 1962, 15 (3), 194–201.

https://doi.org/10.1107/S0365110X62000511.

Dominko, R.; Dupont, L.; Gaberšček, M.; Jamnik, J.; Baudrin, E. Alkali Hexatitanates—

A2Ti6O13 (A=Na, K) as Host Structure for Reversible Lithium Insertion. Journal of

Power Sources 2007, 174 (2), 1172–1176. https://doi.org/10.1016/j.jpowsour.

06.181.

Zulueta, Y. A.; Geerlings, P.; Tielens, F.; Nguyen, M. T. Lithium- and Sodium-Ion

Transport Properties of Li2Ti6O13, Na2Ti6O13 and Li2Sn6O13. Journal of Solid State

Chemistry 2019, 279, 120930. https://doi.org/10.1016/j.jssc.2019.120930.

Fernández-Gamboa, J. R.; Tielens, F.; Zulueta, Y. A. Theoretical Study of Li2Ti6O13,

Li2Sn6O13 and Li2Zr6O13 as Possible Cathode in Li-Ion Batteries. Materials Science in

Semiconductor Processing 2022, 152, 107074. https://doi.org/10.1016/j.mssp.2022.1070

Simalaotao, K.; Thanasarnsurapong, T.; Maluangnont, T.; Phacheerak, K.; Boonchun, A.

Elastic Properties of A2Ti6O13 ( H, Li, Na, K and Rb): A Computational Study. J. Phys.

D: Appl. Phys. 2023, 56 (38), 385303. https://doi.org/10.1088/1361-6463/acd790

Kataoka, K.; Awaka, J.; Kijima, N.; Hayakawa, H.; Ohshima, K.; Akimoto, J. Ion-

Exchange Synthesis, Crystal Structure, and Electrochemical Properties of Li2Ti6O13.

Chem. Mater. 2011, 23 (9), 2344–2352. https://doi.org/10.1021/cm103678e.

Peréz-Flores, J. C.; Kuhn, A.; Alvarado, F. G.-. A Comparative Electrochemical Study of

Li2Ti6O13 and Na2Ti6O13. Meet. Abstr. 2010, MA2010-03 (1), 280.

https://doi.org/10.1149/MA2010-03/1/280.

Flores, J. C. P.; Hoelzel, M.; Kuhn, A.; Alvarado, F. G. On the Mechanism of Lithium

Insertion into A2Ti6O13 (A = Na, Li). ECS Trans. 2012, 41 (41), 195.

https://doi.org/10.1149/1.4717977.

Pérez-Flores, J. C.; Kuhn, A.; García-Alvarado, F. Synthesis, Structure and

Electrochemical Li Insertion Behaviour of Li2Ti6O13 with the Na2Ti6O13 Tunnel-

Structure. Journal of Power Sources 2011, 196 (3), 1378–1385.

https://doi.org/10.1016/j.jpowsour.2010.08.106.

Pérez-Flores, C. J.; Kuhn, A.; García-Alvarado, F. A Structural and Electrochemical

Study of Li2Ti6O13. MRS Online Proceedings Library 2011, 1313 (1), 8.

https://doi.org/10.1557/opl.2011.1390.

Pérez-Flores, J. C.; Baehtz, C.; Hoelzel, M.; Kuhn, A.; García-Alvarado, F. Full

Structural and Electrochemical Characterization of Li2Ti6O13 as Anode for Li-Ion

Batteries. Phys. Chem. Chem. Phys. 2012, 14 (8), 2892.

https://doi.org/10.1039/c2cp23741e.

Kraytsberg, A.; Ein-Eli, . Higher, tronger, Better A Review of 5 Volt Cathode

Materials for Advanced Lithium-Ion Batteries. Advanced Energy Materials 2012, 2 (8),

–939. https://doi.org/10.1002/aenm.201200068.

Van der Ven, A.; Deng, Z.; Banerjee, S.; Ong, S. P. Rechargeable Alkali-Ion Battery

Materials: Theory and Computation. Chem. Rev. 2020, 120 (14), 6977–7019.

https://doi.org/10.1021/acs.chemrev.9b00601.

Zulueta, Y. A.; Nguyen, M. T. Lithium Hexastannate: A Potential Material for Energy

Storage. physica status solidi (b) 2018, 255 (7), 1700669.

https://doi.org/10.1002/pssb.201700669.

Clark, S. J.; Segall, M. D.; Pickard, C. J.; Hasnip, P. J.; Probert, M. I. J.; Refson, K.;

Payne, M. C. First Principles Methods Using CASTEP. Zeitschrift für Kristallographie -

Crystalline Materials 2005, 220 (5–6), 567–570.

https://doi.org/10.1524/zkri.220.5.567.65075.

Perdew, J. P.; Ruzsinszky, A.; Csonka, G. I.; Vydrov, O. A.; Scuseria, G. E.; Constantin,

L. A.; Zhou, X.; Burke, K. Restoring the Density-Gradient Expansion for Exchange in

Solids and Surfaces. Phys. Rev. Lett. 2008, 100 (13), 136406.

https://doi.org/10.1103/PhysRevLett.100.136406.

Pfrommer, B. G.; Côté, M.; Louie, S. G.; Cohen, M. L. Relaxation of Crystals with the

Quasi-Newton Method. Journal of Computational Physics 1997, 131 (1), 233–240.

https://doi.org/10.1006/jcph.1996.5612.

D. Gale, J. GULP: A Computer Program for the Symmetry-Adapted Simulation of

Solids. Journal of the Chemical Society, Faraday Transactions 1997, 93 (4), 629–637.

https://doi.org/10.1039/A606455H.

Zulueta, Y. A.; Dawson, J. A.; Froeyen, M.; Nguyen, M. T. Structural Properties and

Mechanical Stability of Monoclinic Lithium Disilicate: Structural Properties of

Monoclinic Lithium Disilicate. Phys. Status Solidi B 2017, 254 (10), 1700108.

https://doi.org/10.1002/pssb.201700108.

Zulueta, Y. A.; Froeyen, M.; Nguyen, M. T. Structural Properties and Mechanical

Stability of Lithium-Ion Based Materials. A Theoretical Study. Computational Materials

Science 2017, 136, 271–279. https://doi.org/10.1016/j.commatsci.2017.04.033.

Zulueta, Y. A.; Geerlings, P.; Tielens, F.; Nguyen, M. T. Influence of Oxygen–Sulfur

Exchange on the Structural, Electronic, and Stability Properties of Alkali Hexastannates.

J. Phys. Chem. C 2019, 123 (40), 24375–24382.

https://doi.org/10.1021/acs.jpcc.9b06295.

Schlüter, M.; Sham, L. J. Density-Functional Theory of the Band Gap. In Advances in

Quantum Chemistry; Löwdin, P.-O., Ed.; Density Functional Theory of Many-Fermion

Systems; Academic Press, 1990; Vol. 21, pp 97–112. https://doi.org/10.1016/S0065-

(08)60593-6.

Perdew, J. P. Density Functional Theory and the Band Gap Problem. Int. J. Quantum

Chem. 2009, 28 (S19), 497–523. https://doi.org/10.1002/qua.560280846.

Zulueta Leyva, Y. A.; Nguyen, M. T. Implications of Oxygen–Sulfur Exchange on

tructural, Electronic Properties, and tability of Alkali‐Metal Hexatitanates. Phys.

Status Solidi B 2019, 256 (8), 1800568. https://doi.org/10.1002/pssb.201800568.

Medvedev, M. G.; Bushmarinov, I. S.; Sun, J.; Perdew, J. P.; Lyssenko, K. A. Density

Functional Theory Is Straying from the Path toward the Exact Functional. Science 2017,

(6320), 49–52. https://doi.org/10.1126/science.aah5975.

Bartel, C. J. Review of Computational Approaches to Predict the Thermodynamic

Stability of Inorganic Solids. J Mater Sci 2022, 57 (23), 10475–10498.

https://doi.org/10.1007/s10853-022-06915-4

Published

2023-12-18

How to Cite

Fernández-Gamboa, J., A.-Zulueta, Y., Pham-Ho, M. P., Tielens, F., & Tho Nguyen, M. (2023). Theoretical predictions of alkali hexazirconate (A2Zr6O13, A= Li, Na, and K) as candidates for alkali ion batteries. Revista Cubana De Química, 35(3), 396–410. Retrieved from https://cubanaquimica.uo.edu.cu/index.php/cq/article/view/5343

Issue

Section

Artículos