Predicciones teóricas de hexazirconatos alcalinos (A2Zr6O13, A= Li, Na y K) como candidatos para baterías de iones alcalinos

Autores

  • J.R. Fernández-Gamboa Departamento de Física, Facultad de Ciencias Naturales y Exactas, Universidad de Oriente, Santiago de Cuba, Cuba
  • Yohandys A.-Zulueta Departamento de Física, Facultad de Ciencias Naturales y Exactas, Universidad de Oriente, Santiago de Cuba, Cuba
  • My Phuong Pham-Ho Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), Vietnam
  • Frederick Tielens General Chemistry (ALGC)–Materials Modelling Group, Vrije Universiteit Brussel, Belgium
  • Minh Tho Nguyen Laboratory for Chemical Computation and Modeling, Institute for Computational Science and Artificial Intelligence, Van Lang University, Vietnam

Palavras-chave:

batería de iones alcalinos; simulaciones atomísticas; propiedades estructurales; band pap

Resumo

The complete transition to renewable energy sources is limited by your intermittent energy
generation. The battery provides the portability of stored chemical energy with the ability to
deliver this energy as electrical energy with a high conversion efficiency. The oxide based on
the Andersson-Wadsley family has received increasing attention to use as an anode of battery
due to this structure presenting the tunnel to ionic transport. The structural, electronic, and
mechanical properties of Li2Zr6O13 and unknown materials Na2Zr6O13 and K2Zr6O13 were
evaluated using classical simulations and DFT calculations. The electronic band structure
analysis points out the insulator character of Li2Zr6O13 and Na2Zr6O13 and the semiconductor character of the K2Zr6O13 compound. The reaction ion exchange of Li/K, Li/Na, and K/Na is energetically favourable to the synthesis of the unknown materials K2Zr6O13 and Na2Zr6O13, respectively, for this reason, these compounds can be recommended as an alternative material for energy storage in ion-batteries.

Referências

Saiful Islam, M.; J. Fisher, C. A. Lithium and Sodium Battery Cathode Materials:

Computational Insights into Voltage, Diffusion and Nanostructural Properties. Chemical

Society Reviews 2014, 43 (1), 185–204. https://doi.org/10.1039/C3CS60199D.

Whittingham, M. S. Lithium Batteries and Cathode Materials. Chem. Rev. 2004, 104

(10), 4271–4302. https://doi.org/10.1021/cr020731c.

Ellis, B. L.; Lee, K. T.; Nazar, L. F. Positive Electrode Materials for Li-Ion and Li-

Batteries †. Chem. Mater. 2010, 22 (3), 691–714. https://doi.org/10.1021/cm902696j.

Deng, D. Li-Ion Batteries: Basics, Progress, and Challenges. Energy Sci Eng 2015, 3 (5),

–418. https://doi.org/10.1002/ese3.95.

Andersson, S.; Wadsley, A. D. The Structures of Na2Ti6O13 and Rb2Ti6O13 and the Alkali

Metal Titanates. Acta Crystallographica 1962, 15 (3), 194–201.

https://doi.org/10.1107/S0365110X62000511.

Dominko, R.; Dupont, L.; Gaberšček, M.; Jamnik, J.; Baudrin, E. Alkali Hexatitanates—

A2Ti6O13 (A=Na, K) as Host Structure for Reversible Lithium Insertion. Journal of

Power Sources 2007, 174 (2), 1172–1176. https://doi.org/10.1016/j.jpowsour.

06.181.

Zulueta, Y. A.; Geerlings, P.; Tielens, F.; Nguyen, M. T. Lithium- and Sodium-Ion

Transport Properties of Li2Ti6O13, Na2Ti6O13 and Li2Sn6O13. Journal of Solid State

Chemistry 2019, 279, 120930. https://doi.org/10.1016/j.jssc.2019.120930.

Fernández-Gamboa, J. R.; Tielens, F.; Zulueta, Y. A. Theoretical Study of Li2Ti6O13,

Li2Sn6O13 and Li2Zr6O13 as Possible Cathode in Li-Ion Batteries. Materials Science in

Semiconductor Processing 2022, 152, 107074. https://doi.org/10.1016/j.mssp.2022.1070

Simalaotao, K.; Thanasarnsurapong, T.; Maluangnont, T.; Phacheerak, K.; Boonchun, A.

Elastic Properties of A2Ti6O13 ( H, Li, Na, K and Rb): A Computational Study. J. Phys.

D: Appl. Phys. 2023, 56 (38), 385303. https://doi.org/10.1088/1361-6463/acd790

Kataoka, K.; Awaka, J.; Kijima, N.; Hayakawa, H.; Ohshima, K.; Akimoto, J. Ion-

Exchange Synthesis, Crystal Structure, and Electrochemical Properties of Li2Ti6O13.

Chem. Mater. 2011, 23 (9), 2344–2352. https://doi.org/10.1021/cm103678e.

Peréz-Flores, J. C.; Kuhn, A.; Alvarado, F. G.-. A Comparative Electrochemical Study of

Li2Ti6O13 and Na2Ti6O13. Meet. Abstr. 2010, MA2010-03 (1), 280.

https://doi.org/10.1149/MA2010-03/1/280.

Flores, J. C. P.; Hoelzel, M.; Kuhn, A.; Alvarado, F. G. On the Mechanism of Lithium

Insertion into A2Ti6O13 (A = Na, Li). ECS Trans. 2012, 41 (41), 195.

https://doi.org/10.1149/1.4717977.

Pérez-Flores, J. C.; Kuhn, A.; García-Alvarado, F. Synthesis, Structure and

Electrochemical Li Insertion Behaviour of Li2Ti6O13 with the Na2Ti6O13 Tunnel-

Structure. Journal of Power Sources 2011, 196 (3), 1378–1385.

https://doi.org/10.1016/j.jpowsour.2010.08.106.

Pérez-Flores, C. J.; Kuhn, A.; García-Alvarado, F. A Structural and Electrochemical

Study of Li2Ti6O13. MRS Online Proceedings Library 2011, 1313 (1), 8.

https://doi.org/10.1557/opl.2011.1390.

Pérez-Flores, J. C.; Baehtz, C.; Hoelzel, M.; Kuhn, A.; García-Alvarado, F. Full

Structural and Electrochemical Characterization of Li2Ti6O13 as Anode for Li-Ion

Batteries. Phys. Chem. Chem. Phys. 2012, 14 (8), 2892.

https://doi.org/10.1039/c2cp23741e.

Kraytsberg, A.; Ein-Eli, . Higher, tronger, Better A Review of 5 Volt Cathode

Materials for Advanced Lithium-Ion Batteries. Advanced Energy Materials 2012, 2 (8),

–939. https://doi.org/10.1002/aenm.201200068.

Van der Ven, A.; Deng, Z.; Banerjee, S.; Ong, S. P. Rechargeable Alkali-Ion Battery

Materials: Theory and Computation. Chem. Rev. 2020, 120 (14), 6977–7019.

https://doi.org/10.1021/acs.chemrev.9b00601.

Zulueta, Y. A.; Nguyen, M. T. Lithium Hexastannate: A Potential Material for Energy

Storage. physica status solidi (b) 2018, 255 (7), 1700669.

https://doi.org/10.1002/pssb.201700669.

Clark, S. J.; Segall, M. D.; Pickard, C. J.; Hasnip, P. J.; Probert, M. I. J.; Refson, K.;

Payne, M. C. First Principles Methods Using CASTEP. Zeitschrift für Kristallographie -

Crystalline Materials 2005, 220 (5–6), 567–570.

https://doi.org/10.1524/zkri.220.5.567.65075.

Perdew, J. P.; Ruzsinszky, A.; Csonka, G. I.; Vydrov, O. A.; Scuseria, G. E.; Constantin,

L. A.; Zhou, X.; Burke, K. Restoring the Density-Gradient Expansion for Exchange in

Solids and Surfaces. Phys. Rev. Lett. 2008, 100 (13), 136406.

https://doi.org/10.1103/PhysRevLett.100.136406.

Pfrommer, B. G.; Côté, M.; Louie, S. G.; Cohen, M. L. Relaxation of Crystals with the

Quasi-Newton Method. Journal of Computational Physics 1997, 131 (1), 233–240.

https://doi.org/10.1006/jcph.1996.5612.

D. Gale, J. GULP: A Computer Program for the Symmetry-Adapted Simulation of

Solids. Journal of the Chemical Society, Faraday Transactions 1997, 93 (4), 629–637.

https://doi.org/10.1039/A606455H.

Zulueta, Y. A.; Dawson, J. A.; Froeyen, M.; Nguyen, M. T. Structural Properties and

Mechanical Stability of Monoclinic Lithium Disilicate: Structural Properties of

Monoclinic Lithium Disilicate. Phys. Status Solidi B 2017, 254 (10), 1700108.

https://doi.org/10.1002/pssb.201700108.

Zulueta, Y. A.; Froeyen, M.; Nguyen, M. T. Structural Properties and Mechanical

Stability of Lithium-Ion Based Materials. A Theoretical Study. Computational Materials

Science 2017, 136, 271–279. https://doi.org/10.1016/j.commatsci.2017.04.033.

Zulueta, Y. A.; Geerlings, P.; Tielens, F.; Nguyen, M. T. Influence of Oxygen–Sulfur

Exchange on the Structural, Electronic, and Stability Properties of Alkali Hexastannates.

J. Phys. Chem. C 2019, 123 (40), 24375–24382.

https://doi.org/10.1021/acs.jpcc.9b06295.

Schlüter, M.; Sham, L. J. Density-Functional Theory of the Band Gap. In Advances in

Quantum Chemistry; Löwdin, P.-O., Ed.; Density Functional Theory of Many-Fermion

Systems; Academic Press, 1990; Vol. 21, pp 97–112. https://doi.org/10.1016/S0065-

(08)60593-6.

Perdew, J. P. Density Functional Theory and the Band Gap Problem. Int. J. Quantum

Chem. 2009, 28 (S19), 497–523. https://doi.org/10.1002/qua.560280846.

Zulueta Leyva, Y. A.; Nguyen, M. T. Implications of Oxygen–Sulfur Exchange on

tructural, Electronic Properties, and tability of Alkali‐Metal Hexatitanates. Phys.

Status Solidi B 2019, 256 (8), 1800568. https://doi.org/10.1002/pssb.201800568.

Medvedev, M. G.; Bushmarinov, I. S.; Sun, J.; Perdew, J. P.; Lyssenko, K. A. Density

Functional Theory Is Straying from the Path toward the Exact Functional. Science 2017,

(6320), 49–52. https://doi.org/10.1126/science.aah5975.

Bartel, C. J. Review of Computational Approaches to Predict the Thermodynamic

Stability of Inorganic Solids. J Mater Sci 2022, 57 (23), 10475–10498.

https://doi.org/10.1007/s10853-022-06915-4

Publicado

2023-12-18

Como Citar

Fernández-Gamboa, J., A.-Zulueta, Y., Pham-Ho, M. P., Tielens, F., & Tho Nguyen, M. (2023). Predicciones teóricas de hexazirconatos alcalinos (A2Zr6O13, A= Li, Na y K) como candidatos para baterías de iones alcalinos. Revista Cubana De Química, 35(3), 396–410. Recuperado de https://cubanaquimica.uo.edu.cu/index.php/cq/article/view/5343

Edição

Seção

Artículos