DEVELOPMENT OF GLUTAMATE ION-SENSITIVE ELECTRODES BASED ON MOLECULARLY IMPRINTED POLYMER
Keywords:
ion-selective electrodes, Molecularly Imprinted Polymer, glutamic acid.Abstract
The use of Molecularly Imprinted Polymers as ionophores in the sensing membrane of ionselective work is a cutting edge technology in the development of electrochemical sensors
electrodes. In this work, the development of glutamate ion-sensitive electrodes using an acrylictype Molecularly Imprinted is reported. The number of layers of the sensing membrane was
evaluated. The electrode with one layer exhibited the best sensitivity, -50 mVdec-1
, to changes in
glutamate ion concentration, with a practical detection limit of 10⁻⁶ molL-1
, a response time of
fifteen seconds, and a lifetime of approximately thirty days. Interfering agents were aspartic acid,
N-Fmoc-L-glutamic acid, ascorbic acid, and acetic acid. Analysis of the sensor membrane by
Scanning Electron Microscopy indicated a higher population of the polymer on the lower face of
the membrane, which influenced the analytical response of the electrode
References
MOHAMAD-NOR, N. et al. "Recent advancement
in disposable electrode modified with nanomaterials
for electrochemical heavy metal sensors". Critical
reviews in analytical Chemistry. 2023, 53(2), 253-
DOI:
https://doi.org/10.1080/10408347.2021.1950521
HU, J.; STEIN, A.; BÜHLMANN, P. "Rational
design of all-solid-state ion-selective electrodes and
reference electrodes". Trac trends in analytical
Chemistry. 2016, 76, 102-114. DOI:
https://doi.org/10.1016/J.TRAC.2015.11.004
WANG, J.; DING, J.; QIN, W. "An all-solid-state
potentiometric microsensor for real-time monitoring of the calcification process by bacillus subtilis
biofilms". Sensors & Diagnostics. 2023, 2(3), 640-
DOI: https://doi.org/10.1039/D3SD00017F
LAHCEN, A. A.; AMINE, A. "Recent advances in
electrochemical sensors based on molecularly
imprinted polymers and nanomaterials".
Electroanalysis. 2019, 31(2), 188-201. DOI:
https://doi.org/10.1002/ELAN.201800623
FERNÁNDEZ-PUIG, S. et al. "Molecularly
imprinted polymer-silica nanocomposite based
potentiometric sensor for early prostate cancer
detection". Materials Letters. 2022, 309, 131-324.
doi: https://doi.org/10.1016/J.MATLET.2021.131324
FERNÁNDEZ-PUIG, S. et al. "Molecularly
imprinted polymer-silica nanocomposite based
potentiometric sensor for early prostate cancer
detection". Materials Letters . 2022, 309, 131-324.
DOI: https://doi.org/10.1016/j.matlet.2021.131324
COELHO-MOREIRA, F. T. et al. "New
biomimetic sensors for the determination of
tetracycline in biological samples: batch and flow
mode operations". Analytical Methods. 2010, 2(12),
-2045. DOI: https://doi.org/10.1039/c0ay00511h
VILTRES-PORTALES, M.; LUACES-ALBERTO,
M. D.; LEI, Y. "Synthesis of molecularly imprinted
polymers using an amidine-functionalized initiator for
carboxylic acid recognition". Reactive and functional
polymers. 2021, 165, 104969. DOI:
https://doi.org/10.1016/j.reactfunctpolym.2021.104969
SAJADI, S. "Metal ion-binding properties of Lglutamic acid and l-aspartic acid, a comparative
investigation". Natural Science. 2010, 2(02), 85. DOI:
https://doi.org/10.4236/NS.2010.22013
CHAPMAN, J.; ZHOU, M. "Microplate-based
fluorometric methods for the enzymatic determination
of L-glutamate: application in measuring L-glutamate
in food samples". Analytica chimica acta. 1999,
(1-2), 47-52. DOI: https://doi.org/10.1016/S0003-
(99)00533-4
ZHANG, H. J. et al. "Determination of aspartate and
glutamate in rabbit retina using polymer monolith
microextraction coupled to high-performance liquid
chromatography with fluorescence detection".
Analytical Bioanalytical Chemistry. 2006, 386, 2035-
DOI: https://doi.org/10.1007/S00216-006-0836-0
RATH, S.; AIROLDI, F. "Aspectos analíticos del
Glutamato". En: Reyes, F. G. R. Unami y Glutamato:
aspectos químicos, biológicos y tecnológicos. 2021, 2,
pp. 59-90. ISBN: 9786555500950.
LAZO, A. R. et al. "Desarrollo de sensores
electroquímicos para la detección de metales tóxicos y
contaminantes emergentes". Anales de la Academia
de Ciencias de Cuba. 2024, 14(2), E1597.
https://revistaccuba.sld.cu/index.php/revacc/article/
view/1597
LIMA, J. L.; MACHADO, A. A. "Procedure for
the construction of all-solid-state PVC membrane
electrodes". Analyst. 1986, 111(7), 799-802. DOI:
https://doi.org/10.1039/AN9861100799
LAZO-FRAGA A. R. et al. "3, 3-disubstituted Lacylthioureas as ionophores for Pb (II)-ion selective
electrodes: physical and chemical characterization of
the sensing membranes". Phosphorus, Sulfur and
Silicon and the Related Elements. 2023, 198(5), 403-
DOI:
https://doi.org/10.1080/10426507.2022.2152814
VILTRES-PORTALES, M. et al. "Cyclic
voltammetry and impedance spectroscopy analysis for
graphene-modified solid-state electrode transducers".
Journal of Solid State Electrochemistry. 2018, 22,
-478. DOI: https://doi.org/10.1007/S10008-017-
-z
LAZO-FRAGA, A. R. et al. "Evaluación de
diferentes aroiltioureas como ionóforos en sensores de
plomo (II)". Revista Cubana de Química. 2015, 27(3),
-274. ISSN: 2224-5421.
ALMEIDA, S. A. et al. "Sulphonamide-imprinted
sol-gel materials as Ionophores in Potentiometric
Transduction". Materials Science and Engineering: C.
, 31(8), 1784-1790. ISSN: 0928-4931.
DÍAZ-VILLAVICENCIO, L. et al. "Vancomycin
selective electrode based on molecularly imprinted
Polymer". Chemical Papers. 2024, 78(1), 165-172.
DOI: https://doi.org/10.1007/S11696-023-03051-4
BUCK, R. P.; LINDNER, E. "Recommendations
for nomenclature of ionselective electrodes (Iupac
recommendations 1994)". Pure and Applied
Chemistry. 1994, 66(12), 2527-2536. DOI:
https://doi.org/10.1351/PAC199466122527
UMEZAWA, Y.; UMEZAWA, K.; SATO, H.
"Selectivity coefficients for ion-selective electrodes:
recommended methods for reporting Ka, BPOT
Values (Technical Report)". Pure and Applied
Chemistry . 1995, 67(3), 507-518. DOI:
https://doi.org/10.1351/PAC199567030507
LIU, H. et al. "Prediction of the isoelectric point
of an amino acid based on GA-PLS and SVMS".
Journal of Chemical Information and Computer
Sciences. 2004, 44(1), 161-167. DOI:
https://doi.org/10.1021/ci034173u
GAYTE‐SORBIER, A.; AIRAUDO, C. B.;
ARMAND, P. "Stability of glutamic acid and monosodium glutamate under Model System
Conditions: influence of physical and technological
factors". Journal of Food Science. 1985, 50(2), 350-
ISSN: 0022-1147.
BAKKER, E.; BÜHLMANN, P.; PRETSCH, E.
"Carrier-based ion-selective electrodes and bulk optodes. 1.
General characteristics". Chemical Reviews. 1997, 97(8),
-3132. DOI: https://doi.org/10.1021/cr940394a
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Yenisleidy Valdés-Arencibia, Thalía Raful-González, Christian Domínguez-Castelló, Markel D. Luaces-Alberto, Ana R. Lazo-Fraga

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
This journal provides immediate open access to its content, based on the principle that offering the public free access to research helps a greater global exchange of knowledge. Each author is responsible for the content of each of their articles.