DEVELOPMENT OF GLUTAMATE ION-SENSITIVE ELECTRODES BASED ON MOLECULARLY IMPRINTED POLYMER

Authors

  • Yenisleidy Valdés-Arencibia Instituto de Ciencia y Tecnología de Materiales (IMRE), Universidad de La Habana, La Habana, Cuba
  • Thalía Raful-González
  • Christian Domínguez-Castelló Facultad de Química, Universidad de La Habana, La Habana, Cuba
  • Markel D. Luaces-Alberto Instituto de Ciencia y Tecnología de Materiales (IMRE), Universidad de La Habana, La Habana, Cuba
  • Ana R. Lazo-Fraga

Keywords:

ion-selective electrodes, Molecularly Imprinted Polymer, glutamic acid.

Abstract

The use of Molecularly Imprinted Polymers as ionophores in the sensing membrane of ionselective work is a cutting edge technology in the development of electrochemical sensors
electrodes. In this work, the development of glutamate ion-sensitive electrodes using an acrylictype Molecularly Imprinted is reported. The number of layers of the sensing membrane was
evaluated. The electrode with one layer exhibited the best sensitivity, -50 mVdec-1
, to changes in
glutamate ion concentration, with a practical detection limit of 10⁻⁶ molL-1
, a response time of
fifteen seconds, and a lifetime of approximately thirty days. Interfering agents were aspartic acid,
N-Fmoc-L-glutamic acid, ascorbic acid, and acetic acid. Analysis of the sensor membrane by
Scanning Electron Microscopy indicated a higher population of the polymer on the lower face of
the membrane, which influenced the analytical response of the electrode

References

MOHAMAD-NOR, N. et al. "Recent advancement

in disposable electrode modified with nanomaterials

for electrochemical heavy metal sensors". Critical

reviews in analytical Chemistry. 2023, 53(2), 253-

DOI:

https://doi.org/10.1080/10408347.2021.1950521

HU, J.; STEIN, A.; BÜHLMANN, P. "Rational

design of all-solid-state ion-selective electrodes and

reference electrodes". Trac trends in analytical

Chemistry. 2016, 76, 102-114. DOI:

https://doi.org/10.1016/J.TRAC.2015.11.004

WANG, J.; DING, J.; QIN, W. "An all-solid-state

potentiometric microsensor for real-time monitoring of the calcification process by bacillus subtilis

biofilms". Sensors & Diagnostics. 2023, 2(3), 640-

DOI: https://doi.org/10.1039/D3SD00017F

LAHCEN, A. A.; AMINE, A. "Recent advances in

electrochemical sensors based on molecularly

imprinted polymers and nanomaterials".

Electroanalysis. 2019, 31(2), 188-201. DOI:

https://doi.org/10.1002/ELAN.201800623

FERNÁNDEZ-PUIG, S. et al. "Molecularly

imprinted polymer-silica nanocomposite based

potentiometric sensor for early prostate cancer

detection". Materials Letters. 2022, 309, 131-324.

doi: https://doi.org/10.1016/J.MATLET.2021.131324

FERNÁNDEZ-PUIG, S. et al. "Molecularly

imprinted polymer-silica nanocomposite based

potentiometric sensor for early prostate cancer

detection". Materials Letters . 2022, 309, 131-324.

DOI: https://doi.org/10.1016/j.matlet.2021.131324

COELHO-MOREIRA, F. T. et al. "New

biomimetic sensors for the determination of

tetracycline in biological samples: batch and flow

mode operations". Analytical Methods. 2010, 2(12),

-2045. DOI: https://doi.org/10.1039/c0ay00511h

VILTRES-PORTALES, M.; LUACES-ALBERTO,

M. D.; LEI, Y. "Synthesis of molecularly imprinted

polymers using an amidine-functionalized initiator for

carboxylic acid recognition". Reactive and functional

polymers. 2021, 165, 104969. DOI:

https://doi.org/10.1016/j.reactfunctpolym.2021.104969

SAJADI, S. "Metal ion-binding properties of Lglutamic acid and l-aspartic acid, a comparative

investigation". Natural Science. 2010, 2(02), 85. DOI:

https://doi.org/10.4236/NS.2010.22013

CHAPMAN, J.; ZHOU, M. "Microplate-based

fluorometric methods for the enzymatic determination

of L-glutamate: application in measuring L-glutamate

in food samples". Analytica chimica acta. 1999,

(1-2), 47-52. DOI: https://doi.org/10.1016/S0003-

(99)00533-4

ZHANG, H. J. et al. "Determination of aspartate and

glutamate in rabbit retina using polymer monolith

microextraction coupled to high-performance liquid

chromatography with fluorescence detection".

Analytical Bioanalytical Chemistry. 2006, 386, 2035-

DOI: https://doi.org/10.1007/S00216-006-0836-0

RATH, S.; AIROLDI, F. "Aspectos analíticos del

Glutamato". En: Reyes, F. G. R. Unami y Glutamato:

aspectos químicos, biológicos y tecnológicos. 2021, 2,

pp. 59-90. ISBN: 9786555500950.

LAZO, A. R. et al. "Desarrollo de sensores

electroquímicos para la detección de metales tóxicos y

contaminantes emergentes". Anales de la Academia

de Ciencias de Cuba. 2024, 14(2), E1597.

https://revistaccuba.sld.cu/index.php/revacc/article/

view/1597

LIMA, J. L.; MACHADO, A. A. "Procedure for

the construction of all-solid-state PVC membrane

electrodes". Analyst. 1986, 111(7), 799-802. DOI:

https://doi.org/10.1039/AN9861100799

LAZO-FRAGA A. R. et al. "3, 3-disubstituted Lacylthioureas as ionophores for Pb (II)-ion selective

electrodes: physical and chemical characterization of

the sensing membranes". Phosphorus, Sulfur and

Silicon and the Related Elements. 2023, 198(5), 403-

DOI:

https://doi.org/10.1080/10426507.2022.2152814

VILTRES-PORTALES, M. et al. "Cyclic

voltammetry and impedance spectroscopy analysis for

graphene-modified solid-state electrode transducers".

Journal of Solid State Electrochemistry. 2018, 22,

-478. DOI: https://doi.org/10.1007/S10008-017-

-z

LAZO-FRAGA, A. R. et al. "Evaluación de

diferentes aroiltioureas como ionóforos en sensores de

plomo (II)". Revista Cubana de Química. 2015, 27(3),

-274. ISSN: 2224-5421.

ALMEIDA, S. A. et al. "Sulphonamide-imprinted

sol-gel materials as Ionophores in Potentiometric

Transduction". Materials Science and Engineering: C.

, 31(8), 1784-1790. ISSN: 0928-4931.

DÍAZ-VILLAVICENCIO, L. et al. "Vancomycin

selective electrode based on molecularly imprinted

Polymer". Chemical Papers. 2024, 78(1), 165-172.

DOI: https://doi.org/10.1007/S11696-023-03051-4

BUCK, R. P.; LINDNER, E. "Recommendations

for nomenclature of ionselective electrodes (Iupac

recommendations 1994)". Pure and Applied

Chemistry. 1994, 66(12), 2527-2536. DOI:

https://doi.org/10.1351/PAC199466122527

UMEZAWA, Y.; UMEZAWA, K.; SATO, H.

"Selectivity coefficients for ion-selective electrodes:

recommended methods for reporting Ka, BPOT

Values (Technical Report)". Pure and Applied

Chemistry . 1995, 67(3), 507-518. DOI:

https://doi.org/10.1351/PAC199567030507

LIU, H. et al. "Prediction of the isoelectric point

of an amino acid based on GA-PLS and SVMS".

Journal of Chemical Information and Computer

Sciences. 2004, 44(1), 161-167. DOI:

https://doi.org/10.1021/ci034173u

GAYTE‐SORBIER, A.; AIRAUDO, C. B.;

ARMAND, P. "Stability of glutamic acid and monosodium glutamate under Model System

Conditions: influence of physical and technological

factors". Journal of Food Science. 1985, 50(2), 350-

ISSN: 0022-1147.

BAKKER, E.; BÜHLMANN, P.; PRETSCH, E.

"Carrier-based ion-selective electrodes and bulk optodes. 1.

General characteristics". Chemical Reviews. 1997, 97(8),

-3132. DOI: https://doi.org/10.1021/cr940394a

Published

2024-12-16

How to Cite

Valdés-Arencibia, Y., Raful-González, T., Domínguez-Castelló, C., Luaces-Alberto, M. D., & Lazo-Fraga, A. R. (2024). DEVELOPMENT OF GLUTAMATE ION-SENSITIVE ELECTRODES BASED ON MOLECULARLY IMPRINTED POLYMER. Revista Cubana De Química, 36(3). Retrieved from https://cubanaquimica.uo.edu.cu/index.php/cq/article/view/5393

Issue

Section

Artículos