Evaluación termo-mecánica de composites dentales fotopolimerizables
Palavras-chave:
composites dentales fotopolimerizables; aerosil OX50; nanorelleno; temperatura de transición vítrea.Resumo
El objetivo del estudio fue evaluar las propiedades termo-mecánicas de seis composites
dentales fotopolimerizables, preparados utilizando aerosil OX50 como relleno inorgánico y
dos matrices: Bis-GMA/dimetacrilato de tetraetilenglicol/-metacriloxipropiltrimetoxisilano y
Bis-GMA/dimetacrilato de trietilenglicol/-metacriloxipropiltrimetoxisilano. El sistema
iniciador fue el par canforquinona/metacrilato de N,N-dimetilaminoetilo. El relleno se
caracterizó por Espectroscopia Infrarroja a transformada de Fourier, Difracción de rayos-X y
Microscopía Electrónica de Barrido. Los composites se evaluaron mediante Análisis
Termogravimétrico y Análisis Mecánico Dinámico. Se corroboró que el aerosil OX50 es un
dióxido de silicio amorfo, formado por partículas esféricas de tamaño nanométrico. Los
composites experimentales son térmicamente estables hasta los 300 °C, lo que resulta
apropiado para su aplicación. Tres de ellos presentan módulos y temperaturas de transición vítrea adecuadas, ambos parámetros son ligeramente superiores a los del composite comercial
Tetric Ceram ® . Teniendo en cuenta los resultados obtenidos, es posible utilizar los
dimetacrilatos de tretratilenglicol y trietilenglicol en la preparación de los composites dentales
experimentales.
Referências
Convenio de Minamata sobre el Mercurio - texto y anexos. Programa de Naciones
Unidas para el Medio Ambiente. 2019, 3-15. Disponible en:
https://www.mercuryconvention.org/es/resources. Consulta: 9/2/2022.
SUSILA, A. V. and BALASUBRAMANIAN, V. “Correlation of elution and sensitivity
of cell lines to dental composites”, Dental Materials. 2016, 32(3), e63-e72. DOI:
1016/j.dental.2015.11.011.
AL AYYAN, W. et al. “A systematic review and meta-analysis of primary teeth caries
studies in Gulf Cooperation Council States”, The Saudi Dental Journal. 2018, 30(3), 175-
DOI: 10.1016/j.sdentj.2018.05.002.
KIM, J. W.; KIM, L. U.; and KIM, C. K. “Size Control of Silica Nanoparticles and Their Surface Treatment for Fabrication of Dental Nanocomposites”, Biomacromolecules.
, 8, 215–222. DOI: 10.1021/bm060560b.
ALTHAQAFI, K. A.; SATTERTHWAITE, J. and SILIKAS, N. “A review and current
state of autonomic self-healing microcapsules-based dental resin composites”, Dental
Materials. 2020, 36(3), 329-342. DOI: 10.1016/j.dental.2019.12.005.
URCAN, E. et al. “Real-time x CELLigence impedance analysis of the cytotoxicity of
dental composite components on human gingival fibroblasts”, Dental Materials. 2010,
(1), 51-58. DOI: 10.1016/j.dental.2009.08.007.
HABIB, E.; WANG, R. and ZHU, X. X. “Correlation of resin viscosity and monomer
conversion to filler particle size in dental composites”, Dental Materials. 2018, 34(10).
DOI: 10.1016/j.dental.2018.06.008.
PÉREZ-MONDRAGÓN, A. A. et al. “Preparation and evaluation of a BisGMA-free
dental composite resin based on a novel trimethacrylate monomer”, Dental Materials.
, 36(4), 542-550. DOI: 10.1016/j.dental.2020.02.005.
TEKIN, T. H. et al. “Full in-vitro analyses of new-generation bulk fill dental
composites cured by halogen light”, Materials Science and Engineering: C. 2017, 77,
-445. DOI: 10.1016/j.msec.2017.03.251.
KAMALAK, H. et al. “Physico-mechanical and thermal characteristics of
commercially available and newly developed dental flowable composites”, Journal of
Molecular Structure. 2018, 1156, 314-319. DOI: 10.1016/j.molstruc.2017.11.072.
BAROT, T.; RAWTANI, D. and KULKARNI, P. “Physicochemical and biological
assessment of silver nanoparticles immobilized Halloysite nanotubes-based resin
composite for dental applications”, Heliyon. 2020, 6(3), e03601. DOI:
1016/j.heliyon.2020.e03601.
HUANG, Q. et al. “The antibacterial, cytotoxic, and flexural properties of a composite
resin containing a quaternary ammonium monomer”, The Journal of Prosthetic Dentistry.
, 120, 609–616. DOI: 10.1016/j.prosdent.2017.12.017.
WANG, R.; HABIB, E. and ZHU, X. X. “Application of close-packed structures in
dental resin composites”, Dental Materials. 2017, 33(3), 288-293. DOI:
1016/j.dental.2016.12.006.
JERG, A. et al. “Modulation of gingival cell response towards dental composites”,
Dental Materials. 2018, 34(3), 412-426. DOI: 10.1016/j.dental.2017.11.025.
PÉREZ-MONDRAGÓN, A. A. et al. “Evaluation of biocompatible monomers as substitutes for TEGDMA in resin-based dental composites”, Materials Science and
Engineering: C. 2018, 93, 80-87. DOI: 10.1016/j.msec.2018.07.059.
SIDERIDOU, I. et al. “Water sorption characteristics of light-cured dental resins and
composites based on Bis-EMA/PCDMA”, Biomaterials. 2004, 25(2), 367-76. DOI:
1016/s0142-9612(03)00529-5.
PANTOJA, Y. V. Desarrollo de nuevas formulaciones de composites dentales. Tesis
en opción al grado científico de Doctor en Ciencias Químicas, Centro de Biomateriales,
Universidad de La Habana, Universidad de Oriente, La Habana, Cuba, 2007.
FRENZEL, N. et al. “Template assisted surface microstructuring of flowable dental
composites and its effect on microbial adhesion properties”, Dental Materials. 2016,
(3), 476-487. DOI: 10.1016/j.dental.2015.12.016.
MENG, J. et al. “Correlating cytotoxicity to elution behaviors of composite resins in
term of curing kinetic”, Materials Science and Engineering: C. 2017, 78, 413-419. DOI:
1016/j.msec.2017.04.008.
VAN LANDUYT, K. L. et al. “Nanoparticle release from dental composites”, Acta
Biomaterialia. 2014, 10(1), 365-374. DOI: 10.1016/j.actbio.2013.09.044.
SAEN, P. et al. “Physical characterization of unfilled and nanofilled dental resins:
Static versus dynamic mechanical properties”, Dentals Materials. 2016, 32(8), e185-97.
DOI: 10.1016/j.dental.2016.06.001.
FERRACANE, J. L. and PALIN, W. M. “10 - Effects of particulate filler systems on
the properties and performance of dental polymer composites”, Non-Metallic Biomaterials
for Tooth Repair and Replacement. 2013, 294-335. DOI: 10.1533/9780857096432.3.294.
CAO, W. et al. “Mechanical property and antibacterial activity of silver-loaded
polycation functionalized nanodiamonds for use in resin-based dental material
formulations”, Materials Letters. 2018, 220, 104-107. DOI: 10.1016/j.matlet.2018.03.027.
KARABELA, M. M. and SIDERIDOU, I. D. “Synthesis and study of properties of
dental resin composites with different nanosilica particles size”, Dental Materials. 2011,
(8), 825-835. DOI: 10.1016/j.dental.2011.04.008.
ALAYOLA, J. J. E. Efecto de la incorporación de nanoarcillas sobre las propiedades
de materiales compuestos dentales. Maester en Ciencias Materiales Poliméricos, Centro
de Investigaciones Científicas de Yucatán, A.C. Posgrado en materiales poliméricos,
Mérida, Yucatán, 2017.
SANTANA, I. L. “Thermal behavior of direct resin composites: glass transition temperature and initial degradation analyses”, Revista Odonto Ciência [online]. 2011,
(1), 50-55. DOI: 10.1590/S1980-65232011000100012.
SIDERIDOU, I. D.; VOUVOUDI, E. C. and ADAMIDOU, E. A. “Dynamic
mechanical thermal properties of the dental light-cured nanohybrid composite Kalore,
GC: Effect of various food/oral simulating liquids”, Dental Materials. 2015, 31(2), 154-
DOI: 10.1016/j.dental.2014.11.008.
SIDDIQUI, U. et al. “Analyses on mechanical and physical performances of nano-
apatite grafted glass fibers based dental composites”, Materials Chemistry and Physics.
, 263, 124188. DOI: 10.1016/j.matchemphys.2020.124188.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2022 Oridayma Tarano-Artigas , Juan Valerio Cauich-Rodriguez, José Manuel Cervantes-Uc, Lucien Veleva-Muleshkova , Yaymarilis Veranes-Pantoja
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Esta revista oferece acesso aberto imediato ao seu conteúdo, com base no princípio de que oferecer ao público o acesso gratuito à pesquisa contribui para uma maior troca global de conhecimento.