Influence of temperature on the thermal decomposition of the zeolitized tuffs of the caimanes deposit

Authors

  • Yosbel Guerra-González Departamento de Metalurgia Química. Facultad de Metalurgia y Electromecánica. Universidad de Moa “Dr. Antonio Núñez Jiménez”, Cuba
  • Roger S. Almenares-Reyes Departamento de Geología. Facultad de Geología y Minas. Universidad de Moa “Dr. Antonio Núñez Jiménez”, Cuba
  • Wilmer Tito-Robles Centro de Proyectos del Níquel CEPRONIQUEL, Moa Cuba
  • Abelardo Aldino-Utria Departamento de Ingeniería Mecánica. Facultad de Ciencias Técnicas Universidad de Granma, Granma, Cuba
  • Edelio Danguillecourt-Álvarez Departamento de Metalurgia Química. Facultad de Metalurgia y Electromecánica. Universidad de Moa “Dr. Antonio Núñez Jiménez”, Cuba

Keywords:

zeolites; caiman deposit; thermal decomposition.

Abstract

In the present work, the physicochemical characterization of the zeolitized materials from the Caimanes deposit is carried out through X-Ray Fluorescence, Thermogravimetric analysis, Infrared Spectroscopy with Fourier Transform and in the case of X-Ray Diffraction, the analysis of natural and heat-treated material up to 850ºC is carried out. According to the chemical analysis, the Caimanes zeolite is classified as calcic, with a SiO2 content of 62,12%, Al2O3 of 13,32% and CaO of 5,25 %, formed mainly by Heulandite, associated with other mineralogical phases such as Quartz and Calcite. It was determined that the zeolite is thermally stable up to 400ºC. At higher temperatures, total decomposition of the zeolite occurs, passing through different transition states until its final decomposition and loss of crystallinity, which could be appropriate for use as a pozzolanic material in the production of cement.

References

1. ENVIRONMENT, U. et al., “Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry”. Cement and Concrete Research. 2018, 114, p. 2-26. ISSN: 0008-8846. https://spiral.imperial.ac.uk/bitstream/10044/1/51016/2/2016-UNEP%20Reportcomplete6.pdf . [consulta: 25 de Agosto 2020].
2. RAGGIOTTI, B. B. et al., Zeolite, study of aptiude as a natural pozzolan applied to structural concrete. Revista de la Construcción. 2015, 14(2), 14-20. ISSN: 0717-7925. http://146.155.94.136/index.php/RDLC/article/download/13302/11716. [consulta: 5 de Mayo del 2020].
3. TRAN, Y. T. et al., “Natural zeolite and its application in concrete composite production. Composites Part B”. Engineering. 2019. 165: p. 354-364. ISSN: 1359-8368. https://www.sciencedirect.com/science/article/pii/S1359836818321152. [consulta: 20 de Agosto del 2020].
4. OCA, J. J. D. M. D. et al., “Efecto de la adición mineral cal- zeolita sobre la resistencia a la compresión y la durabilidad de un hormigón”. Revista Ingeniería de Construcción. 2009, 24(2): p. 181-194. ISSN: 0718-5073. https://pdfs.semanticscholar.org/683c/ed87202aaf1896998ce94f65632e00d788fb.pdf. [consulta: 21 de Agosto 2020].
5. GUERRA, Y. Evaluación de los productos de calcinación de las tobas zeolitizadas del yacimiento caimanes como material puzolánico. [Instituto Superior Minero Metalúrgico]. Moa, Holguín (Tesis de Maestría). 2015, 88 http://ninive.ismm.edu.cu/bitstream/handle/123456789/3510/Yosbel.pdf?sequence=1. [consulta: 3 de Septiembre 2020].
6. FIRDOUS, R.; D. STEPHAN & J. N. Y. DJOBO. “Natural pozzolan based geopolymers: A review on mechanical, microstructural and durability characteristics”. Construction and Building Materials. 2018, 190, 1251-1263. ISSN: 0950-0618. https://www.academia.edu/download/57637941/1-s2.0-S0950061818323791-main.pdf. [consulta: 15 de Julio 2020].
7. CÓRDOVA-RODRÍGUEZ, V. et al., “Zeolita natural de palmarito de cauto para el tratamiento de licores residuales de industrias de fibrocemento”. Minería y Geología. 2013, 29(1),42-59. ISSN: 1993-8012. https://www.redalyc.org/pdf/2235/223527546004.pdf. [consulta: 18 de Mayo 2020].
8. MAFEFE, F.-N. et al., “Caracterización mineralógica de tobas zeolitizadas del yacimiento caimanes para su beneficio por molienda diferencial”. Minería y Geología, 2007. 23(4), 1-18. ISSN: 1993-8012. https://www.redalyc.org/pdf/2235/223515990002.pdf. [consulta: 25 de Julio 2020].
9. MUSTELIER, J. L. C. et al., Las zeolitas naturales de cuba, in Las zeolitas naturales en los países de iberoamérica. 2018, Fundación Gómez Pardo: Madrid. p. 190-215. ISBN: 978-84-09-00125-5. http://oa.upm.es/50683/
10. HILDEBRANDO, E. A. et al., “Síntese de zeólita do tipo faujasita a partir de um rejeito de caulim”. Cerâmica. 2012. 58(348) 453-458. ISSN: 0366-6913. https://www.scielo.br/scielo.php?pid=S0366-69132012000400006&script=sci_arttext. [consulta: 5 de Julio 2020].
11. SAULO DE TARSO FIGUEIREDO GRECCO; M. D. C. RANGEL & E. A. URQUIETA-GONZÁLEZ, “Zeólitas hierarquicamente estruturadas”. Química Nova. 2013, 36(1), p. 131-142. ISSN: 0100-4042. https://www.scielo.br/scielo.php?pid=S0100-40422013000100023&script=sci_arttext&tlng=pt. [consulta: 18 de Julio 2020].
12. SILVA, F. A. N. G. et al., “Estudo de síntese e transição entre as fases zeolíticas sodalita e cancrinita”. Holos, 2014. 3, 299-308, ISSN: 1807-1600. http://www2.ifrn.edu.br/ojs/index.php/HOLOS/article/download/1823/834. [consulta: 7 de Julio 2020].
13. VALENZUELA, J. F. 2015. Materiales nanoestructurados en zeolitas. [Universidad de Sonora]. (Tesis en opción del grado en Doctor en Ciencias ). 83 http://www.repositorioinstitucional.uson.mx/bitstream/handle/unison/821/floresvalenzuelajoaquind.pdf?sequence=1&isAllowed=y. [consulta: 10 de Julio 2020]
14. HAW, K.-G. et al., “Embryonic zsm-5 zeolites: Zeolitic materials with superior catalytic activity in 1, 3, 5-triisopropylbenzene dealkylation”. New Journal of Chemistry. 2016, 40(5), 4307-4313. ISSN: 1369-9261. https://pubs.rsc.org/lv/content/getauthorversionpdf/C5NJ03310A. [consulta: 5 de Septiembre 2020].
15. CÓRDOVA-RODRÍGUEZ, V. et al., “Use of natural mordenite to remove chromium (iii) and to neutralize ph of alkaline waste waters”. Journal of Environmental Science and Health, Part A. 2016, 51(5), 425-433. ISSN: 1093-4529. https://www.tandfonline.com/doi/abs/10.1080/10934529.2015.1120536. [consulta: 10 de Julio 2020].
16. FERRO, D. T. et al., “El hierro en la roca zeolitizada del yacimiento de palmarito de cauto: Separación y caracterizaciónde fases magnéticas”. Minería y Geología. 2011, 27(1), 22-37, ISNN: 1993-8012. http://200.14.55.89/index.php/revistamg/article/viewFile/141/144. [consulta: 22 de Junio 2020].
17. DÍAZ, U. & A. CORMA. “Layered zeolitic materials: An approach to designing versatile functional solids”. Dalton Transactions. 2014, 43(27), 10292-10316, ISBN: 1477-9226. https://riunet.upv.es/bitstream/handle/10251/54407/09%2012%202013%20Draft%20Review%20Dalton%20Trans%20Rev%20revised.pdf. [consulta: 10 de Dicembre 2020].
18. KÜÇÜKYıLDıRıM, E. & B. UZAL, “Characteristics of calcined natural zeolites for use in high-performance pozzolan blended cements”. Construction and Building Materials. 2014, 73, 229-234, ISBN: 0950-0618. https://www.sciencedirect.com/science/article /abs/pii/S0950061814010976. [consulta: 27 de Noviembre 2020].
19. DE LA VILLA, R. V. et al., “Evolution of the pozzolanic activity of a thermally treated zeolite”. Journal of Materials Science. 2013, 48(8), 3213-3224, ISSN: 1573-4803. https://link.springer.com/article/10.1007/s10853-012-7101-z. [consulta: 13 de Septiembre 2020].
20. RODRÍGUEZ-IZNAGA, I. et al., “Zeolitas naturales de diferentes yacimientos cubanos: Composición y estabilidad química y térmica”. Revista Cubana de Química. 2011, 23(1), 80-88. ISSN: 0258-5995. https://www.redalyc.org/pdf/4435/443543722011.pdf. [consulta: 5 de Julio 2020].
21. COSTA, I. C. M. Materiais zeolíticos de estrutura MWW: Síntese e caracterização. Trabalhio de Mestrado [Universidade Federal do Rio Grande do Norte]. 2015, Rio Grande do Norte 94p.https://repositorio.ufrn.br/bitstream/123456789/20593/1/IzabelCristinaMedeirosCosta_DISSERT.pdf. [consulta: 4 de Diciembre 2020].
22. BURRIS, L. E. & M. C. JUENGER, “Milling as a pretreatment method for increasing the reactivity of natural zeolites for use as supplementary cementitious materials”. Cement and Concrete Composites. 2016, 65, 163-170, ISSN: 0958-9465. https://www.sciencedirect.com/science/article/abs/pii/S0958946515300275. [consulta: 26 de Octubre 2020].
23. KORKUNA, O. et al., Structural and physicochemical properties of natural zeolites: Clinoptilolite and mordenite. Microporous and Mesoporous Materials. 2006, 87(3), 243-254, ISBN: 1387-1811, https://chem.lnu.edu.ua/wp-content/uploads/2016/10/243-254.pdf. [consulta: 25 de Octubre 2020].
24. BURRIS, L. E. & M. C. JUENGER, “Effect of calcination on the reactivity of natural clinoptilolite zeolites used as supplementary cementitious materials”. Construction and Building Materials. 2020, 258, 119988. ISSN: 0950-0618. https://www.sciencedirect.com/science/article/abs/pii/S0950061820319930.

Published

2021-03-10

How to Cite

Guerra-González, Y., Almenares-Reyes, R. S., Tito-Robles, W., Aldino-Utria, A., & Danguillecourt-Álvarez, E. (2021). Influence of temperature on the thermal decomposition of the zeolitized tuffs of the caimanes deposit. Revista Cubana De Química, 33(1), 117–137. Retrieved from https://cubanaquimica.uo.edu.cu/index.php/cq/article/view/5170

Issue

Section

Artículos

Most read articles by the same author(s)