Characterization and evaluation of physicochemical and electrical properties of nickel (II) hydroxide, obtained with industrial liquors


  • Elvira Leyva-Navarro Unidad de Proyectos e Investigaciones, Centro de Investigaciones del Níquel, Moa, Holguín, Cuba
  • Deisy Cisneros-Sánchez Unidad de Proyectos e Investigaciones, Centro de Investigaciones del Níquel, Moa, Holguín, Cuba
  • Pedro Demetrio Mune-Bandera Departamento de Física, Facultad de Ciencias Naturales y Exactas, Universidad de Oriente, Santiago de Cuba, Cuba
  • Orleidis Loyola-Breffe Departamento de Metalurgia-Química, Facultad de Metalurgia y Electromecánica, Universidad de Moa, Holguín, Cuba
  • Edelio Danguillecourt-Álvarez Departamento de Metalurgia-Química, Facultad de Metalurgia y Electromecánica, Universidad de Moa, Holguín, Cuba


hidróxido de níquel; propiedades estructurales; térmicas y eléctricas.


Physical, chemical and electrical characteristics of nickel hydroxide, prepared with aqueous solutions from the leaching of nickel sulfide produced at the Comandante Ernesto Che Guevara de Moa Company, were evaluated. Solutions reagent grade nickel sulfate, were used to prepare the reference hydroxide and both hydroxides were compared. Chemical composition, structural, thermal, textural properties were analyzed using AA, DRX, TG, DSC, FTIR, RAMAN and BET techniques. The electrical characterization was carried out by the two- point method. As a result of the work, a β-Ni(OH)2 with 56,4 % nickel and 1,3 % cobalt was obtained, which did not presented other mineralogical phases associated with cobalt. The possibility of use it in rechargeable batteries and electrical supercapacitors, was considered because have it structural and electrical properties similar to the hydroxide reference.


WANG, Y. et al. “Controllable synthesis of hierarchical nickel hydroxide nanotubes for high performance supercapacitors”. Chemical Communications, 2018. 54(5): p. 559-562. DOI: 10.1039/c7cc08879e. Available from:

BRISSE, A. L. et al. “Ni(OH)2 and NiO based composites: battery type electrode materials for hybrid supercapacitor devices”. Materials, 2018. 11(7): p. 117801-117815. DOI: 10.3390/ma11071178. Available from:

LIU, Y. et al. “A new architecture design of Ni-Co LDH-based pseudocapacitors”. Journal of Materials Chemistry A, 2017, 5(46): p. 24407-24415. DOI: 10.1039/C7TA07795E. Available from:

LI, R. et al. “Large scale synthesis of NiCo layered double hydroxides for superior asymmetric electrochemical capacitor”. Scientific Reports, 2016. 6(1): p. 1-9. DOI: 10.1038/srep18737. Available from:

ABDALLA, A. H. et al. “Rechargeable nickel-iron batteries for largescale energy storage”. IET Renew. Power Gener, 2016. 10(10): p. 1529-1534. DOI: 10.1049/iet-rpg.2016.0051. Available from:

HUANG, J. et al. “Asymmetric supercapacitors based on β-Ni(OH)2 nanosheets and activated carbon with high energy density”. Journal of Power Sources, 2014. 246: p. 371-376. DOI: 10.1016/j.jpowsour.2013.07.105. Available from:

XU, P. et al. A novel material NiOOH directly grown on in-situ etched Cu(OH)2 nanowire with high performance of electrochemical energy storage. Electrochimica Acta, 2017. 232: p. 445-455. DOI: 10.1016/j.electacta.2017.02.158. Available from:

YE, L. et al. “Constructing efficient quasi-solid-state alkaline Ni-Fe battery based on Ni-Mn hydroxides/Ni3S2 and FeOOH@RGO electrodes”. Journal of Materials Science: Materials in Electronics, 2019. 30(14): p. 13076-13089. DOI: 10.1007/s10854-019-01669-3. Available from:

WANG, K. et al. “A novel Ni(OH)2/graphene nanosheets electrode with high capacitance and excellent cycling stability for pseudocapacitors”. Journal of Power Sources, 2016. 333: p. 156-163. DOI: 10.1016/j.jpowsour.2016.09.153. Available from:

ZU, G. et al. “Homogeneous deposition of Ni(OH)2 onto cellulose-derived carbon aerogels for low-cost energy storage electrodes”. RSC Advances, 2017. 7(17): p. 10583-10591. DOI: 10.1039/C6RA26566A. Available from:

ASH, B. et al. “Perspectives on Nickel Hydroxide Electrodes Suitable for Rechargeable Batteries: Electrolytic vs. Chemical Synthesis Routes”. Nanomaterials, 2020. 10(9): p. 1878-1900. DOI: 10.3390/nano10091878. Available from:

QIU, W. et al. “A flexible rechargeable quasi-solid-state Ni-Fe battery based on surface engineering exhibits high energy and long durability”. Inorganic Chemistry Frontiers, 2018. 5(8): p. 1805-1815. DOI: 10.1039/C8QI00359A. Available from:

LIU, J. et al. “A flexible alkaline rechargeable Ni/Fe battery based on graphene foam/carbon nanotubes hybrid film”. Nano Letters, 2014. 14(12): p. 7180-7187. DOI: 10.1021/nl503852m. Available from:

MENG, Z. et al. “Tailoring NiCoAl layered double hydroxide nanosheets for assembly of high-performance asymmetric supercapacitors”. Journal of Colloid and Interface Science, 2021. 583: p. 722-733. DOI: 10.1016/j.jcis.2020.08.120. Available from:

TANG, Y. et al. “Hydrothermal synthesis of a flower-like nano-nickel hydroxide for high performance supercapacitors”. Electrochimica Acta, 2014. 123: p. 158-166. DOI: 10.1016/j.electacta.2013.12.187. Available from:

SHAKIR, I. et al. “Nickel hydroxide nanoparticles and their hybrids with carbon nanotubes for electrochemical energy storage applications”. Results in Physics, 2020. 17: p. 1031171-1031178. DOI: 10.1016/j.rinp.2020.103117. Available from:

TIENTONG, J. et al. “Synthesis of Nickel and Nickel Hydroxide Nanopowders by Simplified Chemical Reduction”. Journal of Nanotechnology, 2014. 2014: p. 1-6. DOI: 10.1155/2014/193162. Available from:

PU, J. et al. “Nickel-cobalt hydroxide nanosheets arrays on Ni foam for pseudocapacitor applications.” Journal of Power Sources, 2014. 250: p. 250-256. DOI: 10.1016/j.jpowsour.2013.10.108. Available from:

MIN, S. et al. “One-pot hydrothermal synthesis of reduced graphene oxide/Ni(OH)2 films on nickel foam for high performance supercapacitors”. Electrochimica Acta, 2014. 115: p. 155-164. DOI: 0.1016/j.electacta.2013.10.140. Available from:

KOVALENKO, V. and V. KOTOK. “Definition of effectiveness of β-Ni(OH)2 application in the alkaline secondary cells and hybrid supercapacitors”. Восточно-Европейский журнал передовых технологий, 2017(5 (6)): p. 17-22. DOI: 10.15587/1729- 4061.2017.110390

KUMAR, C. R. R. et al. “Effects of Precipitation pH Values on the Electrochemical Properties of β-Nickel Hydroxide Materials”. IOSR Journal of Applied Chemistry, 2015. 8(12): p. 45-51. DOI: 10.9790/5736-081224551

SHANGGUAN, E. et al. “Comparative structural and electrochemical study of high density spherical and non-spherical Ni(OH)2 as cathode materials for Ni-metal hydride batteries”. Journal of Power Sources, 2011. 196(18): p. 7797-7805. DOI: 10.1016/j.jpowsour.2011.05.013. Available from:

ZHANG, Y. et al. “Recovery of rare earth metals and synthesis of Ni0. 6Co0. 2Mn0. 2 (OH) 2 from spent asymmetric-capacitance power batteries”. Journal of Cleaner Production, 2019. 235: p. 1295-1303. DOI: 10.1016/j.jclepro.2019.07.072. Available from:

CISNEROS-SÁNCHEZ, D. et al. “Síntesis del hidróxido de níquel (II) con disolución multicomponente de la lixiviación de sulfuro de la tecnología Caron”. Revista Colombiana de Química, 2021. 50(2): p. 49-57. DOI: 10.15446/rev.colomb.quim.v50n2.89644 Available from:

YANG, Y. et al. “Synthesis and performance of spherical LiNixCoyMn1-x-yO2 regenerated from nickel and cobalt scraps”. Hydrometallurgy, 2016. 165: p. 358-369. DOI: 10.1016/j.hydromet.2015.11.015. Available from:

TSAI, T. H., H. W. CHOU, and Y. F. WU. “Removal of nickel from chemical plating waste solution through precipitation and production of microsized nickel hydroxide particles”. Separation and Purification Technology, 2020. 251: p. 1173151-1173157. DOI: 10.1016/j.seppur.2020.117315. Available from:

CHEN, X. et al. “Hydrometallurgical processes for valuable metals recycling from spent lithium-ion batteries”. Recycling of Spent Lithium-Ion Batteries, 2019: p. 93-139. DOI: 10.1007/978-3-030-31834-5_5. Available from:

CISNEROS-SÁNCHEZ, D. et al. “Obtención de hidróxido de níquel (II) para baterías recargables a partir de soluciones acuosas multicomponentes: efecto de las condiciones de síntesis”. Minería y Geología, 2020. 36(1): p. 65-80. Available from:

BOYCHUK, V. et al. “Synthesis, Structural, Morphological, Electrical, and Electrochemical Properties of Ni(OH)2/Reduced Graphene Oxide Composite Materials”. Nanosistemi, Nanomateriali, Nanotehnologii, 2019. 17(2): p. 299-231. Available from:

KHEMII, O.M. et al. “Synthesis, morphology, electrical conductivity and electrochemical properties of α-Ni(OH)2 and its composites with carbon”. Materials Science Poland, 2019. 37(4): p. 547-553. DOI: 10.2478/msp-2019-0077. Available from:

ZHANG, A. et al. “Hierarchical NiMn-layered double hydroxides@CuO core-shell heterostructure in-situ generated on Cu(OH)2 nanorod arrays for high performance supercapacitors”. Chemical Engineering Journal, 2020. 380: p. 12248601-12248610. DOI: 10.1016/j.cej.2019.122486. Available from:

WU, X. et al. “Stabilizing metallic iron nanoparticles by conformal graphitic carbon coating for high-rate anode in Ni-Fe batteries”. Nano Letters, 2020. 20(3): p. 1700-1706. DOI: 10.1021/acs.nanolett.9b04867. Available from:

MIRANDA, M. A. R. and J. M. SASAKI. “The limit of application of the Scherrer equation”. Acta Crystallographica Section A: Foundations and Advances, 2018. 74(1): p. 54-65. DOI: 10.1107/S2053273317014929. Available from:

LI, Y. et al. “High-tap-density Fe-doped nickel hydroxide with enhanced lithium storage performance”. ACS omega, 2019. 4(4): p. 7759-7765. DOI: 10.1021/acsomega.9b00579. Available from:

TANG, A. et al. “Mechanochemical synthesis of Ni(OH)2 and the decomposition to NiO nanoparticles: Thermodynamic and optical spectra”. Journal of alloys and compounds, 2014. 600: p. 204-209. DOI: 10.1016/j.jallcom.2014.02.120. Available from:

ZHANG, J. et al. “Flower-like nickel–cobalt binary hydroxides with high specific capacitance: tuning the composition and asymmetric capacitor application”. Journal of Electroanalytical Chemistry, 2015. 743: p. 38-45. DOI: 10.1016/j.jelechem.2015.02.021. Available from:



How to Cite

Leyva-Navarro, E., Cisneros-Sánchez, D., Mune-Bandera, P. D., Loyola-Breffe, O., & Danguillecourt-Álvarez, E. (2023). Characterization and evaluation of physicochemical and electrical properties of nickel (II) hydroxide, obtained with industrial liquors. Revista Cubana De Química, 35(2), 215–237. Retrieved from




Most read articles by the same author(s)