Caracterización y evaluación de propiedades físico-químicas y eléctricas del hidróxido de níquel (II), obtenido con licores industriales

Autores

  • Elvira Leyva-Navarro Unidad de Proyectos e Investigaciones, Centro de Investigaciones del Níquel, Moa, Holguín, Cuba
  • Deisy Cisneros-Sánchez Unidad de Proyectos e Investigaciones, Centro de Investigaciones del Níquel, Moa, Holguín, Cuba
  • Pedro Demetrio Mune-Bandera Departamento de Física, Facultad de Ciencias Naturales y Exactas, Universidad de Oriente, Santiago de Cuba, Cuba
  • Orleidis Loyola-Breffe Departamento de Metalurgia-Química, Facultad de Metalurgia y Electromecánica, Universidad de Moa, Holguín, Cuba
  • Edelio Danguillecourt-Álvarez Departamento de Metalurgia-Química, Facultad de Metalurgia y Electromecánica, Universidad de Moa, Holguín, Cuba

Palavras-chave:

hidróxido de níquel; propiedades estructurales; térmicas y eléctricas.

Resumo

Se evaluaron las características físico-químicas y eléctricas del hidróxido de níquel, preparado con soluciones acuosas de la lixiviación del sulfuro de níquel producido en la Empresa Comandante Ernesto Che Guevara de Moa, las cuales se compararon con el hidróxido de referencia, conseguido a partir de soluciones obtenidas con sulfato de níquel grado reactivo. Se analizaron composición química, propiedades estructurales, térmicas y texturales, mediante las técnicas de AA, DRX, TG, DSC, FTIR, RAMAN y BET. La caracterización eléctrica se realizó por el método de las dos puntas. Como resultado del trabajo se obtuvo un β-Ni(OH)2 con 56,4 % de níquel y 1,3 % de cobalto, que no presentó otras fases mineralógicas asociadas al cobalto, y se caracterizó por poseer propiedades estructurales y eléctricas similares al hidróxido de referencia, lo que permitió considerar la posibilidad de su empleo en baterías recargables y supercondensadores eléctricos.

Referências

WANG, Y. et al. “Controllable synthesis of hierarchical nickel hydroxide nanotubes for high performance supercapacitors”. Chemical Communications, 2018. 54(5): p. 559-562. DOI: 10.1039/c7cc08879e. Available from: https://pubs.rsc.org/en/content/articlelanding/2017/cc/c7cc08879e/unauth

BRISSE, A. L. et al. “Ni(OH)2 and NiO based composites: battery type electrode materials for hybrid supercapacitor devices”. Materials, 2018. 11(7): p. 117801-117815. DOI: 10.3390/ma11071178. Available from: https://www.mdpi.com/1996-1944/11/7/1178

LIU, Y. et al. “A new architecture design of Ni-Co LDH-based pseudocapacitors”. Journal of Materials Chemistry A, 2017, 5(46): p. 24407-24415. DOI: 10.1039/C7TA07795E. Available from: https://pubs.rsc.org/en/content/articlelanding/2017/ta/c7ta07795e/unauth

LI, R. et al. “Large scale synthesis of NiCo layered double hydroxides for superior asymmetric electrochemical capacitor”. Scientific Reports, 2016. 6(1): p. 1-9. DOI: 10.1038/srep18737. Available from: https://www.nature.com/articles/srep18737

ABDALLA, A. H. et al. “Rechargeable nickel-iron batteries for largescale energy storage”. IET Renew. Power Gener, 2016. 10(10): p. 1529-1534. DOI: 10.1049/iet-rpg.2016.0051. Available from: https://ietresearch.onlinelibrary.wiley.com/doi/full/10.1049/iet-rpg.2016.0051

HUANG, J. et al. “Asymmetric supercapacitors based on β-Ni(OH)2 nanosheets and activated carbon with high energy density”. Journal of Power Sources, 2014. 246: p. 371-376. DOI: 10.1016/j.jpowsour.2013.07.105. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0378775313013141

XU, P. et al. A novel material NiOOH directly grown on in-situ etched Cu(OH)2 nanowire with high performance of electrochemical energy storage. Electrochimica Acta, 2017. 232: p. 445-455. DOI: 10.1016/j.electacta.2017.02.158. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0013468617304383

YE, L. et al. “Constructing efficient quasi-solid-state alkaline Ni-Fe battery based on Ni-Mn hydroxides/Ni3S2 and FeOOH@RGO electrodes”. Journal of Materials Science: Materials in Electronics, 2019. 30(14): p. 13076-13089. DOI: 10.1007/s10854-019-01669-3. Available from: https://link.springer.com/article/10.1007/s10854-019-01669-3

WANG, K. et al. “A novel Ni(OH)2/graphene nanosheets electrode with high capacitance and excellent cycling stability for pseudocapacitors”. Journal of Power Sources, 2016. 333: p. 156-163. DOI: 10.1016/j.jpowsour.2016.09.153. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0378775316313519

ZU, G. et al. “Homogeneous deposition of Ni(OH)2 onto cellulose-derived carbon aerogels for low-cost energy storage electrodes”. RSC Advances, 2017. 7(17): p. 10583-10591. DOI: 10.1039/C6RA26566A. Available from: https://pubs.rsc.org/en/content/articlehtml/2017/ra/c6ra26566a

ASH, B. et al. “Perspectives on Nickel Hydroxide Electrodes Suitable for Rechargeable Batteries: Electrolytic vs. Chemical Synthesis Routes”. Nanomaterials, 2020. 10(9): p. 1878-1900. DOI: 10.3390/nano10091878. Available from: https://www.mdpi.com/2079-4991/10/9/1878

QIU, W. et al. “A flexible rechargeable quasi-solid-state Ni-Fe battery based on surface engineering exhibits high energy and long durability”. Inorganic Chemistry Frontiers, 2018. 5(8): p. 1805-1815. DOI: 10.1039/C8QI00359A. Available from: https://pubs.rsc.org/en/content/articlehtml/2018/qi/c8qi00359a

LIU, J. et al. “A flexible alkaline rechargeable Ni/Fe battery based on graphene foam/carbon nanotubes hybrid film”. Nano Letters, 2014. 14(12): p. 7180-7187. DOI: 10.1021/nl503852m. Available from: https://pubs.acs.org/doi/abs/10.1021/nl503852m

MENG, Z. et al. “Tailoring NiCoAl layered double hydroxide nanosheets for assembly of high-performance asymmetric supercapacitors”. Journal of Colloid and Interface Science, 2021. 583: p. 722-733. DOI: 10.1016/j.jcis.2020.08.120. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0021979720311747

TANG, Y. et al. “Hydrothermal synthesis of a flower-like nano-nickel hydroxide for high performance supercapacitors”. Electrochimica Acta, 2014. 123: p. 158-166. DOI: 10.1016/j.electacta.2013.12.187. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0013468614000589

SHAKIR, I. et al. “Nickel hydroxide nanoparticles and their hybrids with carbon nanotubes for electrochemical energy storage applications”. Results in Physics, 2020. 17: p. 1031171-1031178. DOI: 10.1016/j.rinp.2020.103117. Available from: https://www.sciencedirect.com/science/article/pii/S2211379720306380

TIENTONG, J. et al. “Synthesis of Nickel and Nickel Hydroxide Nanopowders by Simplified Chemical Reduction”. Journal of Nanotechnology, 2014. 2014: p. 1-6. DOI: 10.1155/2014/193162. Available from: https://www.hindawi.com/journals/jnt/2014/193162/

PU, J. et al. “Nickel-cobalt hydroxide nanosheets arrays on Ni foam for pseudocapacitor applications.” Journal of Power Sources, 2014. 250: p. 250-256. DOI: 10.1016/j.jpowsour.2013.10.108. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0378775313017746

MIN, S. et al. “One-pot hydrothermal synthesis of reduced graphene oxide/Ni(OH)2 films on nickel foam for high performance supercapacitors”. Electrochimica Acta, 2014. 115: p. 155-164. DOI: 0.1016/j.electacta.2013.10.140. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0013468613021105

KOVALENKO, V. and V. KOTOK. “Definition of effectiveness of β-Ni(OH)2 application in the alkaline secondary cells and hybrid supercapacitors”. Восточно-Европейский журнал передовых технологий, 2017(5 (6)): p. 17-22. DOI: 10.15587/1729- 4061.2017.110390

KUMAR, C. R. R. et al. “Effects of Precipitation pH Values on the Electrochemical Properties of β-Nickel Hydroxide Materials”. IOSR Journal of Applied Chemistry, 2015. 8(12): p. 45-51. DOI: 10.9790/5736-081224551

SHANGGUAN, E. et al. “Comparative structural and electrochemical study of high density spherical and non-spherical Ni(OH)2 as cathode materials for Ni-metal hydride batteries”. Journal of Power Sources, 2011. 196(18): p. 7797-7805. DOI: 10.1016/j.jpowsour.2011.05.013. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0378775311009797

ZHANG, Y. et al. “Recovery of rare earth metals and synthesis of Ni0. 6Co0. 2Mn0. 2 (OH) 2 from spent asymmetric-capacitance power batteries”. Journal of Cleaner Production, 2019. 235: p. 1295-1303. DOI: 10.1016/j.jclepro.2019.07.072. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0959652619324114

CISNEROS-SÁNCHEZ, D. et al. “Síntesis del hidróxido de níquel (II) con disolución multicomponente de la lixiviación de sulfuro de la tecnología Caron”. Revista Colombiana de Química, 2021. 50(2): p. 49-57. DOI: 10.15446/rev.colomb.quim.v50n2.89644 Available from: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-28042021000200049

YANG, Y. et al. “Synthesis and performance of spherical LiNixCoyMn1-x-yO2 regenerated from nickel and cobalt scraps”. Hydrometallurgy, 2016. 165: p. 358-369. DOI: 10.1016/j.hydromet.2015.11.015. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0304386X15301547

TSAI, T. H., H. W. CHOU, and Y. F. WU. “Removal of nickel from chemical plating waste solution through precipitation and production of microsized nickel hydroxide particles”. Separation and Purification Technology, 2020. 251: p. 1173151-1173157. DOI: 10.1016/j.seppur.2020.117315. Available from: https://sci-hub.ru/10.1016/j.seppur.2020.117315

CHEN, X. et al. “Hydrometallurgical processes for valuable metals recycling from spent lithium-ion batteries”. Recycling of Spent Lithium-Ion Batteries, 2019: p. 93-139. DOI: 10.1007/978-3-030-31834-5_5. Available from: https://link.springer.com/chapter/10.1007/978-3-030-31834-5_5

CISNEROS-SÁNCHEZ, D. et al. “Obtención de hidróxido de níquel (II) para baterías recargables a partir de soluciones acuosas multicomponentes: efecto de las condiciones de síntesis”. Minería y Geología, 2020. 36(1): p. 65-80. Available from: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1993-80122020000100065

BOYCHUK, V. et al. “Synthesis, Structural, Morphological, Electrical, and Electrochemical Properties of Ni(OH)2/Reduced Graphene Oxide Composite Materials”. Nanosistemi, Nanomateriali, Nanotehnologii, 2019. 17(2): p. 299-231. Available from: http://lib.pnu.edu.ua:8080/bitstream/123456789/4437/1/Boichuk_nano%20%281%29.pdf

KHEMII, O.M. et al. “Synthesis, morphology, electrical conductivity and electrochemical properties of α-Ni(OH)2 and its composites with carbon”. Materials Science Poland, 2019. 37(4): p. 547-553. DOI: 10.2478/msp-2019-0077. Available from: https://sciendo.com/downloadpdf/journals/msp/37/4/article-p547.xml

ZHANG, A. et al. “Hierarchical NiMn-layered double hydroxides@CuO core-shell heterostructure in-situ generated on Cu(OH)2 nanorod arrays for high performance supercapacitors”. Chemical Engineering Journal, 2020. 380: p. 12248601-12248610. DOI: 10.1016/j.cej.2019.122486. Available from: https://www.sciencedirect.com/science/article/abs/pii/S1385894719318893

WU, X. et al. “Stabilizing metallic iron nanoparticles by conformal graphitic carbon coating for high-rate anode in Ni-Fe batteries”. Nano Letters, 2020. 20(3): p. 1700-1706. DOI: 10.1021/acs.nanolett.9b04867. Available from: https://sci-hub.ru/10.1021/acs.nanolett.9b04867

MIRANDA, M. A. R. and J. M. SASAKI. “The limit of application of the Scherrer equation”. Acta Crystallographica Section A: Foundations and Advances, 2018. 74(1): p. 54-65. DOI: 10.1107/S2053273317014929. Available from: https://scripts.iucr.org/cgi-bin/paper?td5046

LI, Y. et al. “High-tap-density Fe-doped nickel hydroxide with enhanced lithium storage performance”. ACS omega, 2019. 4(4): p. 7759-7765. DOI: 10.1021/acsomega.9b00579. Available from: https://pubs.acs.org/doi/pdf/10.1021/acsomega.9b00579

TANG, A. et al. “Mechanochemical synthesis of Ni(OH)2 and the decomposition to NiO nanoparticles: Thermodynamic and optical spectra”. Journal of alloys and compounds, 2014. 600: p. 204-209. DOI: 10.1016/j.jallcom.2014.02.120. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0925838814004903

ZHANG, J. et al. “Flower-like nickel–cobalt binary hydroxides with high specific capacitance: tuning the composition and asymmetric capacitor application”. Journal of Electroanalytical Chemistry, 2015. 743: p. 38-45. DOI: 10.1016/j.jelechem.2015.02.021. Available from: https://www.sciencedirect.com/science/article/abs/pii/S1572665715000843

Publicado

2023-06-05

Como Citar

Leyva-Navarro, E., Cisneros-Sánchez, D., Mune-Bandera, P. D., Loyola-Breffe, O., & Danguillecourt-Álvarez, E. (2023). Caracterización y evaluación de propiedades físico-químicas y eléctricas del hidróxido de níquel (II), obtenido con licores industriales. Revista Cubana De Química, 35(2), 215–237. Recuperado de https://cubanaquimica.uo.edu.cu/index.php/cq/article/view/5332

Edição

Seção

Artículos

Artigos mais lidos pelo mesmo(s) autor(es)