Biological synthesis of silver nanoparticles: review of potential use of Trichoderma species

Authors

Keywords:

silver nanoparticles; biogenic synthesis; trichoderma sp.

Abstract

Among the most widely used metallic nanoparticles are those synthesized from silver ions, that´s why the study of their synthesis methods is essential in the development of nanotechnology. The biogenic synthesis of nanoparticles with metabolites from extracts of plants, fungi and bacteria are considered a sustainable and environmental-friendly method. In this work a study of the state of the art is carried out on the biological synthesis of silver nanoparticles using bacteria, plants and fungi, and in particular on Trichoderma species. The results obtained from the conducted review show that the nanoparticles produced with Trichoderma have spherical morphology, great uniformity, a size distribution between 6-60 nm and stability. A methodology is needed that allows to define the optimal parameters for obtaining these nanoparticles on a larger scale.

References

1. MORITA, K., et al. "Application 8 - A Cancer Treatment Strategy That Combines the Use of Inorganic/Biocomplex Nanoparticles With Conventional Radiation Therapy." En: NAITO, M.; YOKOYAMA, T.; HOSOKAWA, K. ; NOGI, K. eds. Nanoparticle Technology Handbook (Third Edition). Amsterdam. Netherlands: Elsevier, 2018, pp. 439-443. ISBN 978-0-444-64110-6 2. FUKUI, H. "Application 1 - Development of New Cosmetics Based on Nanoparticles." En: NAITO, M.; YOKOYAMA, T.; HOSOKAWA, K.; NOGI, K. eds. Nanoparticle Technology Handbook (Third Edition). Amsterdam. Netherlands: Elsevier, 2018, pp. 399-405. ISBN 978-0444-64110-6 3. ZHANG, Q.; KANO, J. ; SAITO, F. "Application 79 - Nanotechnology Challenge in Mechanochemistry." En: NAITO, M.; YOKOYAMA, T.; HOSOKAWA, K. ; NOGI, K. eds. Nanoparticle Technology Handbook (Third Edition). Amsterdam. Netherlands: Elsevier, 2018, pp. 839-843. ISBN 978-0-444-64110-6 4. SINGH, R. P.; HANDA, R. ; MANCHANDA, G. “Nanoparticles in sustainable agriculture: An emerging opportunity”. Journal of Controlled Release. 2021, 329, 1234-1248. ISSN: 01683659 5. VAHABI, K.; MANSOORI, G. A. ; KARIMI, S. Biosynthesis of silver nanoparticles by fungus Trichoderma reesei (a route for large-scale production of AgNPs). Insciences Journal. 2011, 1 (1), 65-79. ISSN: 1664-171X 6. SIMÕES, F. R. ; TAKEDA, H. H. "1 -Basic Concepts and Principles." En: DA RÓZ, A.L.; FERREIRA, M.; DE LIMA LEITE, F. ; OLIVEIRA, O.N. eds. Nanostructures. New York, USA: William Andrew Publishing. 2017, pp. 1-32. ISBN 978-0-323-49782-4. 7. YOKOYAMA, T., et al. "CHAPTER 1 - BASIC PROPERTIES AND MEASURING METHODS OF NANOPARTICLES." En: HOSOKAWA, M.; NOGI, K.; NAITO, M. ; YOKOYAMA, T. eds. Nanoparticle Technology Handbook. Amsterdam, Netherlands: Elsevier, 2008, pp. 3-48. ISBN 978-0-444-53122-3 8. SRINIVASAN, K., et al. Nanotechnology Trends in Fashion and Textile Engineering. Current Trends in Fashion Technology & Textile Engineering. California. USA: Juniper Publishers Inc., 2018, 2 (3), 56-59. ISSN: 2577-2929.
9. HAJIPOUR, M. J., et al. Antibacterial properties of nanoparticles. Trends in Biotechnology. Amsterdam, Netherlands: Elsevier Science Publishers B.V., 2012, 30 (10), 499-511. ISSN: 01677799. 10. MOHAMMED, Y. H., et al. “Support for the Safe Use of Zinc Oxide Nanoparticle Sunscreens: Lack of Skin Penetration or Cellular Toxicity after Repeated Application in Volunteers”. Journal of Investigative Dermatology. Amsterdam. Netherlands: Elsevier. 2019, 139 (2), 308-315. ISSN: 0022-202X 11. SOLTANIAN, H.; KHALOKAKAIE, R.; ATAEI, M. ; KAZEMZADEH, E. “Fe2O3 nanoparticles improve the physical properties of heavy-weight wellbore cements: A laboratory study”. Journal of Natural Gas Science and Engineering. 2015, 26, 695-701. ISSN: 1875-5100. 12. KAMAL AHMED, A. M., et al. “Improving the tribological characteristics of piston ring assembly in automotive engines using Al2O3 and TiO2 nanomaterials as nano-lubricant additives”. Tribology International. 2016, 103, 540-554. ISSN: 0301-679X 13. GÓMEZ-PASTORA, J., et al. “Review and perspectives on the use of magnetic nanophotocatalysts (MNPCs) in water treatment”. Chemical Engineering Journal. 2017, 310, 407-427. ISSN: 1385-8947 14. GAO, Z., et al. “Mesoporous silica nanoparticles-based fluorescent mini sensor array with dual emission for discrimination of biothiols”. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2020, 606, 125433. ISSN: 0927-7757 15. KRISHNAN, V. ; MITRAGOTRI, S. “Nanoparticles for topical drug delivery: Potential for skin cancer treatment”. Advanced Drug Delivery Reviews. 2020, 153, 87-108. ISSN: 0169-409X 16. RAMOS, A. P.; CRUZ, M. A. E.; TOVANI, C. B. ; CIANCAGLINI, P. “Biomedical applications of nanotechnology”. Biophysical Reviews. Singapur: World Scientific Publishing, 2017, 9 (2), 79-89. ISSN: 1867-2469 17. GURUNATHAN, S.; PARK, J. H.; HAN, J. W. ; KIM, J. H. Comparative assessment of the apoptotic potential of silver nanoparticles synthesized by Bacillus tequilensis and Calocybe indica in MDA-MB-231 human breast cancer cells: targeting p53 for anticancer therapy. Int J Nanomedicine. New Zealand: DOVE Medical Press, 2015, 10, 4203-4222. ISSN: 1176-9114. 18. BAPAT, R. A., et al. “An overview of application of silver nanoparticles for biomaterials in dentistry”. Materials Science and Engineering: C. 2018, 91, 881-898. ISSN: 0928-4931
19. ROSMAN, N. S. R.; HARUN, N. A.; IDRIS, I. ; ISMAIL, W. I. W. “Eco-friendly silver nanoparticles (AgNPs) fabricated by green synthesis using the crude extract of marine polychaete, Marphysa moribidii: biosynthesis, characterisation, and antibacterial applications”. Heliyon. 2020, 6 (11), 5462. ISSN: 2405-8440 20. PENG, S., et al. “Polyimide with half encapsulated silver nanoparticles grafted ceramic composite membrane: Enhanced silver stability and lasting anti‒biofouling performance”. Journal of Membrane Science. 2020, 611, 118340. ISSN: 0376-7388 21. LÓPEZ, D. M. G., et al. “Evaluación del crecimiento de Salmonella, E. coli, S. aureus, Shigella y Pseudomona sometidas a un compuesto nanopartículas de plata y quitosano. e-Gnosis. Avances de Investigación en Inocuidad de Alimentos. México: Universidad de Guadalajara, 2019, 2 (1), 1-6. ISSN: 1665-5745 22. DONG, Y., et al. “Antibacterial activity of silver nanoparticles of different particle size against Vibrio natriegens”. PloS one. 2019, 14 (9), e0222322-e0222322. ISSN: 1932-6203 23. GÓMEZ, G. L. “Nanopartículas de plata: tecnología para su obtención, caracterización y actividad biológica”. Investigacion en discapacidad. 2013, 2 (1), 18-22. ISSN: 2007-6452 24. SPADARO, D., et al. “Synthesis of PMA stabilized silver nanoparticles by chemical reduction process under a two-step UV irradiation”. Applied Surface Science. 2010, 256 (12), 3812-3816. ISSN: 0169-4332 25. YAQOOB, A. A.; UMAR, K. ; IBRAHIM, M. N. M. “Silver nanoparticles: various methods of synthesis, size affecting factors and their potential applications–a review”. Applied Nanoscience. 2020, 10 (5), 1369-1378. ISSN: 2190-5517 26. BOROUMAND MOGHADDAM, A., et al. “Nanoparticles biosynthesized by fungi and yeast: A review of their preparation, properties, and medical applications”. Molecules. 2015, 20 (9), 16540-16565. ISSN: 1420-3049 27. KASITHEVAR, M., et al. “Green synthesis of silver nanoparticles using Alysicarpus monilifer leaf extract and its antibacterial activity against MRSA and CoNS isolates in HIV patients”. Journal of Interdisciplinary Nanomedicine. 2017, 2 (2), 131-141. ISSN: 2058-3273
28. NASRULLAH, M., et al. “Green and Chemical Syntheses of CdO NPs: A Comparative Study for Yield Attributes, Biological Characteristics, and Toxicity Concerns”. ACS omega. 2020, 5 (11), 5739-5747. ISSN: 2470-1343 29. ABDALLAH, B. B., et al. “Differentiation of nanoparticles isolated from distinct plant species naturally growing in a heavy metal polluted site”. Journal of Hazardous Materials. 2020, 386, 121644. ISSN: 0304-3894 30. GÓMEZ-GARZÓN, M. “Nanomateriales, nanopartículas y síntesis verde”. Revista Repertorio de Medicina y Cirugía”. 2018, 27 (2), 75-80. ISSN: 2462-991X 31. SINGH, P.; KIM, Y.-J.; ZHANG, D. ; YANG, D.-C. “Biological Synthesis of Nanoparticles from Plants and Microorganisms”. Trends in Biotechnology. 2016, 34 (7), 588-599. ISSN: 01677799 32. DURÁN, N., et al. “Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains”. Journal of Nanobiotechnology. 2005, 3 (1), 8. ISSN: 1477-3155 33. ELGORBAN, A. M., et al. “Antimicrobial activity and green synthesis of silver nanoparticles using Trichoderma viride”. Biotechnology & Biotechnological Equipment. 2016, 30 (2), 299304, ISSN: 1310-2818 34. ANKAMWAR, B.; DAMLE, C.; AHMAD, A. ; SASTRY, M. “Biosynthesis of gold and silver nanoparticles using Emblica officinalis fruit extract, their phase transfer and transmetallation in an organic solution”. J Nanosci Nanotechnol. 2005, 5 (10), 1665-1671. ISSN: 1533-4880 35. GARDEA-TORRESDEY, J. L., et al. “XAS investigations into the mechanism(s) of Au(III) binding and reduction by alfalfa biomass”. Microchemical Journal. 2002, 71 (2), 193-204. ISSN: 0026-265X 36. STEGEMEIER, J. P., et al. “Speciation Matters: Bioavailability of Silver and Silver Sulfide Nanoparticles to Alfalfa (Medicago sativa)”. Environmental Science & Technology. 2015, 49 (14), 8451-8460. ISSN: 0013-936X 37. LÓPEZ ITURBE, J.; VILCHIS NESTOR, A. R.; SÁNCHEZ MENDIETA, V.; AVALOS BORJA, M. “Obtención y caracterización de nanopartículas de plata soportadas en fibra de algodón”. Superficies y vacío. 2013, 26, 73-78. ISSN: 1665-3521
38. BAPPI, P.; BHUYAN, B.; PURKAYASTHA, D. D. ; DHAR, S. S. “Green synthesis of silver nanoparticles using dried biomass of Diplazium esculentum (retz.) sw. and studies of their photocatalytic and anticoagulative activities”. Journal of Molecular Liquids. 2015, 212, 813-817. ISSN: 0167-7322
39. LEDEZMA, A., et al. “Síntesis biomimética de nanopartículas de plata utilizando extracto acuoso de nopal (Opuntia sp.) y su electrohilado polimérico”. Superficies y vacío. 2014, 27, 133140. ISSN: 1665-3521
40. NAGAICH, U.; GULATI, N. ; CHAUHAN, S. Antioxidant and Antibacterial Potential of Silver Nanoparticles: Biogenic Synthesis Utilizing Apple Extract. Journal of pharmaceutics. 2016, ISSN: 2090-9918
41. KUMAR, B.; SMITA, K.; CUMBAL, L. ; DEBUT, A. “Green synthesis of silver nanoparticles using Andean blackberry fruit extract”. Saudi Journal of Biological Sciences. 2017, 24 (1), 45-50. ISSN: 1319-562X
42. SALGUERO, M. ; PILAQUINGA, F. “Síntesis y caracterización de nanopartículas de plata preparadas con extracto acuoso de cilantro (Coriandrum sativum) y recubiertas con látex de Sangre de Drago (Croton lechleri)”. infoANALÍTICA. 2017, 5 (1), 9-23. ISSN: 2602-8344
43. RONQUILLO-DE JESÚS, E., et al. “Synthesis of silver nanoparticles using aqueous tejocote extracts as reducing and passivating agent”. Revista Chapingo Serie Horticultura. 2018, 10 (2). ISSN: 1027-152X
44. PILAQUINGA, M., et al. “Síntesis verde de nanopartículas de plata usando el extracto acuoso de las hojas de ajo (Allium sativum). infoANALÍTICA”. 2019, 7 (2), 41-55. ISSN: 24778788
45. AKINTELU, S. ; FOLORUNSO, A. “Characterization and antimicrobial investigation of synthesized silver nanoparticles from Annona muricata leaf extracts”. Journal of Nanotechnology Nanomedicine & Nanobiotechnology. 2019, 6 (1), 1-6. ISSN: 2381-2044
46. QUINTEROS, M. A., et al. “Oxidative stress generation of silver nanoparticles in three bacterial genera and its relationship with the antimicrobial activity”. Toxicology in Vitro. 2016, 36, 216-223. ISSN: 0887-2333
47. SANTOS, A., et al. “Nanopartículas sintetizadas por bacterias antárticas y sus posibles mecanismos de síntesis”. International Journal of Morphology. 2017, 35, 26-33. ISSN: 07179502
48. KLAUS, T.; JOERGER, R.; OLSSON, E. ; GRANQVIST, C. G. “Silver-based crystalline nanoparticles, microbially fabricated”. Proc Natl Acad Sci USA. 1999, 96 (24), 13611-13614. ISSN: 0027-8424
49. HERNANDEZ-DÍAZ, M. P. “Síntesis de nanopartículas de plata biológicamente asistida con opuntia sp. y su incorporación en membranas poliméricas nanofibrosas (Maestría)”. Tesis de Maestría, Centro de Investigación en Química Aplicada. Saltillo, Coahuila. México, 2013. https://ciqa.repositorioinstitucional.mx/jspui/bitstream/1025/64/1/Tesis%20de%20maestria%20M arco%20Polo%20Hernadez.pdf. Fecha de revisión: enero 2020.
50. HULKOTI, N. I. ; TARANATH, T. C. “Biosynthesis of nanoparticles using microbes—A review”. Colloids and Surfaces B: Biointerfaces. 2014, 121, 474-483. ISSN: 0927-7765.
51. DORCHEH, S. K. ; VAHABI, K. “Biosynthesis of Nanoparticles by Fungi: Large-Scale Production”. En: MÉRILLON, J.-M. ; RAMAWAT, K.G. eds. Fungal Metabolites. Switzerland: Springer International Publishing, 2016, pp. 1-20. ISBN 978-3-319-19456-1
52. NAIR, B. ; PRADEEP, T. “Coalescence of Nanoclusters and Formation of Submicron Crystallites Assisted by Lactobacillus Strains”. Crystal Growth & Design. 2002, 2 (4), 293-298. ISSN: 1528-7483.
53. SURESH, A. K., et al. “Silver nanocrystallites: biofabrication using Shewanella oneidensis, and an evaluation of their comparative toxicity on gram-negative and gram-positive bacteria”. Environmental Science & Technology. 2010, 44 (13), 5210-5215. ISSN: 0013-936X (Print)0013936x.
54. SHIVAJI, S.; MADHU, S.; SINGH, S. “Extracellular synthesis of antibacterial silver nanoparticles using psychrophilic bacteria”. Process Biochemistry. 2011, 46 (9), 1800-1807. ISSN: 1359-5113
55. MAGESWARI, A., et al. “Synthesis and larvicidal activity of low-temperature stable silver nanoparticles from psychrotolerant Pseudomonas mandelii”. Environ Sci Pollut Res Int. 2015, 22 (7), 5383-5394. ISSN: 0944-1344
56. JAVANI, S.; MARÍN, I.; AMILS, R. ; ABAD, J. P. “Four psychrophilic bacteria from Antarctica extracellularly biosynthesize at low temperature highly stable silver nanoparticles with outstanding antimicrobial activity”. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2015, 483, 60-69. ISSN: 0927-7757
57. SANGUIÑEDO, P., et al. “Extracellular biosynthesis of silver nanoparticles using fungi and their antibacterial activity”·. Nano Biomedicine and Engineering. 2018, 10 (1), 156-164. ISSN: 2150-5578
58. GURUNATHAN, S., et al. Green synthesis of silver nanoparticles using Ganoderma neojaponicum Imazeki: a potential cytotoxic agent against breast cancer cells. Int J Nanomedicine. New Zealand: DOVE Medical Press, 2013, 8, 4399-4413. ISSN: 1176-9114
59. LI, G., et al. “Fungus-mediated green synthesis of silver nanoparticles using Aspergillus terreus”. Int J Mol Sci. 2012, 13 (1), 466-476. ISSN: 1422-0067
60. BHARATHIDASAN, R. ; PANNEERSELVAM, A. “Biosynthesis and characterization of silver nanoparticles using endophytic fungi Aspergillus concius, Penicillium janthinellum and Phomosis sp”. International Journal of Pharmaceutical Sciences. 2012, 3 (9), 3163. ISSN: 09758232
61. RAMALINGMAM, P.; MUTHUKRISHNAN, S. ; THANGARAJ, P. “Biosynthesis of silver nanoparticles using an endophytic fungus, Curvularia lunata and its antimicrobial potential”. Journal of Nanoscience Nanoengineering. 2015, 1 (4), 241-247. ISSN: 2319- 7064
62. ABD EL-AZIZ, A.; AL-OTHMAN, M.; MAHMOUD, M. ; METWALY, H. “Biosynthesis of silver nanoparticles using Fusarium solani and its impact on grain borne fungi”. Digest Journal of Nanomaterials and Biostructures”. 2015, 10 (2), 655-662. ISSN: 1842-3582
63. SANGUIÑEDO, P.; ESTEVEZ, M. B.; FACCIO, R. ; ALBORÉS, S. “Nanopartículas de plata biogénicas a partir del hongo Punctularia atropurpurascens para el control de microrganismos. Mundo nano”. Revista interdisciplinaria en nanociencias y nanotecnología. 2019, 12 (22), 99-108. ISSN: 2448-5691
64. HERNÁNDEZ-MELCHOR, D. J.; FERRERA-CERRATO, R. ; ALARCÓN, A. “Trichoderma: importancia agrícola, biotecnológica, y sistemas de fermentación para producir biomasa y enzimas de interés industrial”. Chilean journal of agricultural animal sciences. 2019, 35 (1), 98-112. ISSN: 0719-3890.
65. GARCÍA-ESPEJO, C. N.; MAMANI-MAMANI, M. M.; CHÁVEZ-LIZÁRRAGA, G. A. ; ÁLVAREZ-ALIAGA, M. T. “Evaluación de la actividad enzimática del Trichoderma inhamatum (BOL-12 QD) como posible biocontrolador”. Journal of the Selva Andina Research Society. 2016, 7 (1), 20-32. ISSN: 2072-9294
66. PÉREZ-TORRES, E., et al. “Eficiencia de Trichoderma harzianum (cepa a-34) y sus filtrados en el control de tres enfermedades fúngicas foliares en arroz”. Bioagro. 2018, 30 (1), 17-26. ISSN: 1316-3361
67. PINEDA-INSUASTI, J. A., et al. “Producción de biopreparados de Trichoderma spp: una revisión”. ICIDCA. Sobre los Derivados de la Caña de Azúcar. 2017, 51 (1), 47-52. ISSN: 01386204
68. CENTENO RUMBOS, R. ; PAVONE MANISCALCO, D. “Producción de celulasas y biomasa del hongo Trichoderma reesei utilizando lodo papelero como fuente de carbono”. Revista de la Sociedad Venezolana de Microbiología. 2015, 35 (1), 35-38. ISSN: 1315-2556
69. DURÁN, N., et al. “Biogenic silver nanoparticles associated with silver chloride nanoparticles (Ag@AgCl) produced by laccase from Trametes versicolor. SpringerPlus. Switzerland: Springer 2014, 3 (1), 645. ISSN: 2193-1801
70. JAISWAL, A. K. ; KHADKA, R. B. "Chapter 8 - Trichoderma metabolites: Versatile weapons against plant pathogens." En: SINGH, J. ; GEHLOT, P. eds. New and Future Developments in Microbial Biotechnology and Bioengineering. Amsterdam, Netherlands: Elsevier, 2020, p. 85-98. ISBN 978-0-12-821007-9
71. PRAMEELA-DEVI, T. P., et al. “Biosynthesis of silver nanoparticles from Trichoderma species”. Indian J Exp Biol. 2013, 51 (7), 543-547. ISSN: 0019-5189
72. GUILGER, M., et al. “Biogenic silver nanoparticles based on Trichoderma harzianum: synthesis, characterization, toxicity evaluation and biological activity”. Scientific Reports. 2017, 7 (1), 44421. ISSN: 2045-2322
73. GUILGER-CASAGRANDE, M., et al. “Biosynthesis of silver nanoparticles employing Trichoderma harzianum with enzymatic stimulation for the control of Sclerotinia sclerotiorum”. Scientific Reports. 2019, 9 (1), 14351. ISSN: 2045-2322
74. SARAVANAKUMAR, K. ; WANG, M.-H. “Trichoderma based synthesis of anti-pathogenic silver nanoparticles and their characterization, antioxidant and cytotoxicity properties”. Microbial Pathogenesis. 2018, 114, 269-273. ISSN: 0882-4010
75. ELAMAWI, R. M.; AL-HARBI, R. E. ; HENDI, A. A. “Biosynthesis and characterization of silver nanoparticles using Trichoderma longibrachiatum and their effect on phytopathogenic fungi”. Egyptian Journal of Biological Pest Control. 2018, 28 (1), 28. ISSN: 2536-9342
76. HIRPARA, D. G. ; GAJERA, H. P. “Green synthesis and antifungal mechanism of silver nanoparticles derived from chitin- induced exometabolites of Trichoderma interfusant”. Applied Organometallic Chemistry. 2020, 34 (3), e5407. ISSN: 0268-2605
77. MUDALIGE, T., et al. “Chapter 11-Characterization of Nanomaterials: Tools and Challenges”. En: LÓPEZ RUBIO, A.; FABRA ROVIRA, M.J.; MARTÍNEZ SANZ, M.; GÓMEZ-MASCARAQUE, L.G. eds. Nanomaterials for Food Applications. Amsterdam, Netherlands: Elsevier, 2019, pp. 313-353. ISBN 978-0-12-814130-4
78. TONG, T., et al. “Effects of material morphology on the phototoxicity of nano-TiO2 to bacteria”. Environmental Science & Technology. 2013, 47 (21), 12486-12495. ISSN: 0013-936x
79. DIKO, C. S., et al. “Optimal synthesis conditions and characterization of selenium nanoparticles in Trichoderma sp. WL-Go culture broth”. Materials Chemistry and Physics. 2020, 246, 122583. ISSN: 0254-0584 80. GATO CÁRDENAS, Y., et al. “Actividad antagónica de cepas autóctonas de Trichoderma spp. frente a fitopatógenos de suelo”. Fitosanidad. 2014, 18 (1), 45-48. ISSN: 1562-3009
81. DÍAZ GARCÍA, A. M.; FELIPE GÓMEZ, A. M. “Las investigaciones en el área de la bionanotecnología en Cuba Mundo nano”. Revista interdisciplinaria en nanociencias y nanotecnología. 2017, 10, 37-71. ISSN: 2448-5691

Published

2021-04-26

How to Cite

Esquivel-Figueredo, R. de la C., & Mas-Diego, S. M. (2021). Biological synthesis of silver nanoparticles: review of potential use of Trichoderma species. Revista Cubana De Química, 33(2), 23–45. Retrieved from https://cubanaquimica.uo.edu.cu/index.php/cq/article/view/5175

Most read articles by the same author(s)