Membranas poliméricas cargadas con zeolita para su futuro empleo en la adsorción de gases contaminantes

Autores/as

Palabras clave:

membranas de PVA; zeolita; clinoptilolita; caracterización; adsorción de CO2.

Resumen

En este trabajo se desarrollaron membranas de alcohol polivinílico (PVA) cargadas con una zeolita natural cubana para su potencial aplicación en la adsorción de CO2. Las mismas fueron caracterizadas por microscopía electrónica de barrido, espectroscopia FTIR con ATR y análisis termogravimétrico. Se pudo comprobar que es posible obtener membranas de PVA/zeolita que son flexibles, homogéneas y con adecuada estabilidad térmica. Se evaluó la importancia de la cantidad de agua adicionada en las características físicas de las membranas. Se pudo establecer que no hay interacciones significativas entre el polímero y la zeolita en los materiales compuestos. Se demostró que su comportamiento térmico depende de la cantidad de zeolita adicionada. Los resultados obtenidos en los estudios de adsorción estática de CO2 a 25 oC sugieren que las membranas compuestas PVA/zeolita pueden ser buenas candidatas como adsorbentes de este gas para su empleo en la purificación del aire. 

Citas

1. ROMERO PLACERES, M.; DIEGO OLITE, F.; ÁLVAREZ TOSTE, M. “La contaminación del aire: su repercusión como problema de salud”. Revista Cubana de Higiene y Epidemiología. 2003, 44 (2), 1-14. ISSN: 1561-3003
2. MARTÍNEZ ATAZ, E.; DÍAZ DE MERA MORALES, Y., Contaminación atmosférica, España: Ediciones de la Universidad de Castilla-La Mancha, 2004. ISBN: 84-8427-324-5
3. PARK, J.H., et al. “Historic and futuristic review of electron beam technology for the treatment of SO2 and NOx in flue gas”. Chemical Engineering Journal. 2019, 355 (1), 351-366. ISSN: 1385-8947.
4. HASSAN, A., et al. “Gas condensate treatment: A critical review of materials, methods, field applications, and new solutions”. Journal of Petroleum Science and Engineering. 2019, 177 (1), 602-613. ISSN: 0920-4105.
5. KONG PUI, W.; YUSOFF, R.; KHEIREDDINE AROUA, M. “A review on activated carbon adsorption for volatile organic compounds (VOCs)”. Reviews in Chemical Engineering. 2019, 35 (5), 649-668. ISSN: 2191-0235.
6. FARÍAS, T., et al. “Clinoptilolita cubana para la adsorción de rodamina B. Caracterización de los materiales zeolita-colorante obtenidos”, Revista Cubana de Química. 2018, 30 (2), 175-190. ISSN: 2224-5421.
7. BORREGO-MORALES, K., et al. “Low cost synthesis and characterization of hierarchical zeolites from silicon natural sources for environmental applications”, Acta Microscopica. 2018, 27 (3), 189-195. ISSN: 0798-4545
8. ESPINOSA, Y.; OLMOS, J.; HERNÁNDEZ, B.C. “Zeolitas naturales: Una alternativa para la remediación ambiental”. KnE Engineering. 2018, 3 (1), 728-735 ISSN: 2518-6841
9. BRITO, A.; COUTÍN, D., “Panorámica del estudio de las zeolititas de Cuba, desde los inicios hasta la actualidad”, XII Congreso de Geología. VII Convención de Ciencias de la Tierra. Geociencias 2017, Sociedad Cubana de Geología, La Habana, Cuba, 2017, pp. 821-838.
10. GIANNETO-PACE, G.; MONTES-RENDÓN, A.; RODRÍGUEZ-FUENTES, G., Zeolitas. Características, propiedades y aplicaciones industriales, 2da ed., Caracas: Ediciones Innovación Tecnológica. 2000. ISBN: 978-9-8000-1648-0
11. AGUILAR-ARMENTA, G.; PATIÑO-IGLESIAS, M.E.; LEYVA-RAMOS, R. “Adsorption kinetic behaviour of pure CO2, N2 and CH4 in natural clinoptilolite at different temperatures”, Adsorption Science and Technology. 2003, 21 (1), 81-91. ISSN: 0263-6174
12. MOFARAHI, M.; GHOLIPOUR, F. “Gas adsorption separation of CO2/CH4 system using zeolite 5A”, Microporous and Mesoporous Materials. 2014, 200, 1-10. ISSN: 1387-1811
13. LIANG, C.Z.; CHUNG, T.-S.; LAI, J.-Y. “A review of polymeric composite membranes for gas separation and energy production”, Progress in Polymer Science. 2019, 97, 101141. ISSN: 0079-6700.
14. ASGHARI, M.; MOSADEGH, M.; HARAMI, H.R. “Supported PEBA-zeolite 13X nanocomposite membranes for gas separation: Preparation, characterization and molecular dynamics simulation”, Chemical Engineering Science. 2018, 187, 67-78. ISSN: 0009-2509
15. SANDERS, D.F., et al. “Energy-efficient polymeric gas separation membranes for a sustainable future: a review”, Polymer. 2013, 54 (18), 4729-4761. ISSN: 0032-3861
16. ISMAIL, A.F.; KHULBE, K.C.; MATSUURA, T., Gas separation membranes, polymeric and inorganic, 1st ed., Switzerland: Springer International Publishing, 2015. ISBN: 978-3-319-01095-3 17. HSU, P.-Y., et al. “Highly zeolite-loaded polyvinyl alcohol composite membranes for alkaline fuel-cell electrolytes”, Polymer. 2018, 10 (1), 102-118. ISSN: 0032-3861
18. RODRÍGUEZ-FUENTES, G., Design and development of new zeolitic materials based on natural clinoptilolite, in: R. Xu, Z. Gao, J. Chen, W. Yan (Eds.), From zeolites to porous MOF materials – the 40th anniversary of International Zeolite Conference, Studies in Surface Science and Catalysis, China, Elsevier, 2007, pp. 2074-2079. ISBN: 978-0-080-5488-52.
19. FARÍAS, T. “Tesis de Maestría: Preparación de potenciales soportes zeolíticos para la liberación de iones de interés farmacéutico”, Universidad de La Habana, Ciudad de La Habana. 2004
20. YU, Q., et al. “Preparation and properties of chitosan derivative/poly(vinyl alcohol) blend film crosslinked with glutaraldehyde”, Carbohydrate Polymers. 2011, 84 (1), 465-470. ISSN: 0144-8617.
21. TREACY, M.M.J.; HIGGINS, J.B., Collection of Simulated XRD Powder Patterns for Zeolites, 5th ed., Amsterdam: Elsevier Science, 2007. ISBN: 978-0-444-53067-7.
22. RODRÍGUEZ-FUENTES, G., et al. “Solid state multinuclear NMR study of iron species in natural and modified clinoptilolite from Tasajera deposit (Cuba)”, Microporous and Mesoporous Materials. 2008, 111 (1-3), 577-590. ISSN: 1387-1811.
23. BRECK, D.W., Zeolite molecular sieves: Structure, chemistry, and use, 1st ed., New York: Wiley, 1974. ISBN: 978-0-4710-9985-7.
24. HERNÁNDEZ, M.A., et al. “Comparación de la capacidad de adsorción de CO2 en clinoptilolitas naturales y tratadas químicamente”, Superficies y Vacío. 2010, 23 (1), 67-72. ISSN: 1665-3521.
25. ESCOBAR-SIERRA, D.M.; PEREA-MESA, Y.P. “Manufacturing and evaluation of chitosan, PVA and Aloe Vera hydrogels for skin applications”, DYNA. 2017, 84 (203), 134-142. ISSN: 2346-2183.
26. NAGAHAMA, H., et al. “Preparation and characterization of novel chitosan/gelatin membranes using chitosan hidrogel”, Carbohydrate Polymers. 2009, 76 (1), 255-260. ISSN: 0144-8617.
27. BLOUT, E.R.; KARPLUS, J.A.R. “The infrared spectrum of polyvinyl alcohol”, Journal of the American Chemical Society. 1948, 70 (2), 862-864. ISSN: 1520-5126.
28. BARTHOMEUF, D. “Basic zeolites: Characterization and uses in adsorption and catalysis”, Catalysis Reviews, Science and Engineering. 1996, 38 (4), 521-612. ISSN: 0161-4940.
29. PENG, Z.; KONG, L. “A thermal degradation mechanism of polyvinyl alcohol/silica nanocomposites”, Polymer Degradation and Stability. 2007, 92 (6), 1061-1071. ISSN: 01413910.
30. SING, K.S.W., et al. “Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity”, Pure and Applied Chemistry. 1985, 57 (4), 603-619. ISSN: 1365-3075.
31. CH. BAERLOCHER; L. B. MCCUSKER; D. H. OLSON, Atlas of zeolite framework types, 6th ed., Elsevier Science, 2007. ISBN: 978-0-444-53064-6.
32. GARCÍA, R., et al. “Adsorción de CO2, H2 y CH4 en zeolitas naturales de poro angosto”, Revista Internacional de Contaminación Ambiental. 2018, 34 (4), 685-696. ISSN: 0188-4999

Descargas

Publicado

2021-04-26

Cómo citar

Méndez-Ares, R., Martínez-García, A., González-Hurtado, M., Reguera-Núñez, L., Autié-Castro, G., & Farías-Piñeira, T. (2021). Membranas poliméricas cargadas con zeolita para su futuro empleo en la adsorción de gases contaminantes. Revista Cubana De Química, 33(2), 69–90. Recuperado a partir de https://cubanaquimica.uo.edu.cu/index.php/cq/article/view/5177

Artículos más leídos del mismo autor/a