Relaxor behavior of the conductive process for the system Pb0,91La0,09(Zr0,65Ti0,35)O3 + xMnO

Authors

  • Arles Vega-García Departamento de Física, Facultad de Ciencias Naturales y Agropecuarias, Universidad de Holguín, Holguín, Cuba
  • Pedro Antonio Mariño-Castellanos Departamento de Física, Facultad de Ciencias Naturales y Agropecuarias, Universidad de Holguín, Holguín, Cuba
  • Julio Velázquez-Infante Unidad de Extensión, Investigación y Capacitación Agropecuaria, División Velasco, Holguín, Cuba
  • Eduardo Fernández-Santiesteban Departamento de Física, Facultad de Ciencias Naturales y Agropecuarias, Universidad de Holguín, Holguín, Cuba
  • Carlos Pupo-Palma Departamento de Física, Facultad de Ciencias Naturales y Agropecuarias, Universidad de Holguín, Holguín, Cuba

Keywords:

PLZT; relaxation by conductivity; oxygen vacancies.

Abstract

In this work, a study of the ceramic Pb0,91La0,09(Zr0,65Ti0,35)O3 + xMnO with x = 0,0; 0,01; 0,02 and 0,03 was carried out, The dielectric response of PLZT was measured using the impedance spectroscopy method, in the frequency range from 100 Hz to 10 MHz and at temperatures from 15 to 700 K, In the behavior of permittivity with frequency, a strong dispersion is reported for x = 0,0, This relaxing behavior becomes imperceptible with the increase of the Mn2+ cation, In the temperature range between 660 and 700 K, the doped samples showed a relaxation process by conductivity, studied by the Cole-Cole relaxation function, determining, in addition, the thermal evolution of the relaxation time τ, suggesting conductive processes by ion movement. The macroscopic activation energy was determined indicating a conduction process by oxygen vacancies.

References

AJEET, K. “Dielectric, Ferroelectric, Energy Storage, and Pyroelectric Properties of Mn-Doped (Pb 0,93 La 0,07 )(Zr 0,82 Ti 0,18 )O3 Anti-Ferroelectric Ceramics”. Journal of the Korean Ceramic Society. 2019, 56 (4), 412-420, DOI:10.4191/kcers.2019.56.4.10.

AJEET, K. y otros. “High energy storage properties and electrical field stability of energy efficiency of (Pb 0,89 La 0,11 )(Zr 0,70 Ti 0,30 ) 0.9725 O3 relaxor ferroelectric ceramics electronic materials letters”. Electronic Materials Letters. 2018, 15, 323-330. DOI:10.1007/s13391-019-00124-z.

DIMZA, V. y otros. “Effects of Mn doping on dielectric properties of ferroelectric relaxor PLZT ceramics”. Current Applied Physic. 2017, 17 (2),169-172, DOI:10.1016/j.cap.2016.11.010 .

AHAMAD-MOHIDDON, M. and YADAV, K. L. “Dielectric dispersion study of Mn-doped PLZT (8/65/35)”. Phys. Status Solidi A. 2009, 206 (7), 1606-1615, DOI:10.1002/pssa.200825075

CARRERAS-CASAS, C. y otros. “Relaxor ferroelectric behavior: An approach considering both the dipolar and electrical conductivity contributions”. Journal of advanced dielectrics. 2021, 11 (3), 1-5, https://doi.org/10.1142/S2010135X21400087.

GONZÁLEZ-MORÁN, Carlos. y otros. “A PLZT Novel Sensor with Pt Implanted for Biomedical Application: Cardiac Micropulses Detection on Human Skin”. Advances in Materials Science and Engineering. 2017, 2017, 1-7, https://doi.org/10.1155/2017/2054940.

XU, J. y otros. “Lanthanum modified lead zirconate titanate thin films by sol-gel and plasma annealing for integrated passive nanophotonic devices”. Optical Materials Express. 2019, 9 (5), 2279-2290, DOI:10.1364/OME.9.002279.

CORNELIUS, T. W. “Piezoelectric Properties of Pb1−x Lax (Zr0.52 Ti0.48 )1−x/4 O3 Thin Films Studied by In Situ X-ray Diffraction”. Materials. 2020, (13), 1-12, https://hal.archives-ouvertes.fr/hal-02907382.

RADHESHYAM, R.; SIKHA, M. and Singh, N. “Effect of Fe and Mn doping at B-site of PLZT ceramics on dielectric properties”. Journal of Alloys and Compounds. 2009, (487), 494–498, DOI:10.1017/S002193200500115X.

RAI, R. y otros. “Effect of Al doping on structural and dielectric properties of PLZT ceramics”. Journal of Materials Science. 2009, 41, 4259–4265, DOI:10.1007/s10853-005-5455-1.

ZHAO, H. “Lasing action and optical amplification in Nd 3+ doped electrooptic lanthanum lead zirconate titanate ceramics”. Optics express. 2011, 19 (4), 2965-2971, https://doi.org/10.1364/OE.19.002965.

ZHANG, Y. y otros. “The microstructure and properties of dysprosium ions doped PLZT ceramics”. Integrated Ferroelectrics. 2006, 78 (1), 215-220, https://doi.org/10.1080/10584580600660413.

DUTTA, S. and CHOUDHARY, R. “Effect of trivalent iron substitution on structure and properties of PLZT ceramics”. Applied Physics A. 2008, 90, 323–328, http://dx.doi.org/10.1007/s00339-007-4276-2.

PÉREZ-DELFIN, E.; GARCÍA, J. and VEGA-GARCÍA, A. “Influence of Mn-doping on phase transition characteristics and relaxor behaviour of lead lanthanum zirconate titanate ceramics”. Journal of the European Ceramic Society. 2012, 32 (8), 1659-1665, https://doi.org/10.1016/j.jeurceramsoc.2011.12.024.

HEE-SEUNG, M. y otros. “Role of oxygen vacancy defects in piezoelectric thermal stability characteristics of Mn-doped (K,Na,Li)NbO 3 piezoceramics”. Ceramics International. 2021, 47 (19), 27803-27815, https://doi.org/10.1016/j.ceramint.2021.06.207.

SUN, Y. and ZHANG, S. “Effect of Oxygen Vacancy on Electrical Property of Acceptor Doped BaTiO3 –Na0.5 Bi0.5 TiO3 –Nb2 O5 X8R Systems”. Journal of the American Ceramic Society. 2016, 1 (7), 1-7, DOI:10.1111/jace.14336. 17. PELÁIZ-BARRANCO, A. and GONZÁLEZ-ABREU, Y. “Dielectric relaxation and conductivity behavior in modified lead titanate ferroelectric ceramics”. Journal of physics condensed matter. 2008, 20, 2-10, DOI:10.1088/0953-8984/20/50/505208. 18. GONZÁLEZ, R. y otros. “Relaxation dynamics of the conductive processes for PbNb2O6 ferroelectric ceramics in the frequency and time domain”. Journal of physics: condensed matter. 2007, 19, 1-12, DOI:10.1088/0953-8984/19/13/136218.

RAMA-RAO, K. y otros. “Raman, impedance spectroscopy and ferroelectric studies of Sn4+ doped PbZr0.52Ti0.48O3 ceramics”. Ferroelectrics. 2021, 583 (1), 51-66, https://doi.org/10.1080/00150193.2021.1980340.

Mariño-Castellanos, P. y otros. “Correlación entre la microestructura de ferritas de bario tipo-M dopadas con Al 3+ y Co 3+ y sus propiedades estructurales y magnéticas”. Revista Cubana de Química. 2016, 28, (1), 325-349, ISSN 2224-5421.

Published

2022-01-03

How to Cite

Vega-García, A. ., Mariño-Castellanos, P. A. ., Velázquez-Infante, J. ., Fernández-Santiesteban, E. ., & Pupo-Palma, C. . (2022). Relaxor behavior of the conductive process for the system Pb0,91La0,09(Zr0,65Ti0,35)O3 + xMnO. Revista Cubana De Química, 34(1), 180–193. Retrieved from https://cubanaquimica.uo.edu.cu/index.php/cq/article/view/5214

Issue

Section

Artículos

Most read articles by the same author(s)