Obtaining, characterization and applications of magnetic materials in the phenological development of lettuce cultivation
Keywords:
phenomenological model; nanostructured materials; M-type hexaferrite; lettuce plantsAbstract
In this research, semi-empirical expressions are applied to calculate the main kinetic parameters for
obtaining phases of the type: BaFe12-2x (Dp2+, Dj4+)x
O19 (BaM + (Dp2+, Dj4+)x
). The latest variant of a
phenomenological model of cations distribution in the different sites of the crystallographic structure
was updated for the prediction of some physical properties, before and after the samples are doped. The
physical interpretation of the structural, microstructural, thermal, and magnetic characterizations of the
phases obtained were carried out. The physical interpretation of the physical-chemical characterizations
carried out gives rise to the potential design of applications of these compounds, as permanent magnets.
This proposal proposes as an example of application, on a laboratory scale, the use of these BaFe12-2x (Co2+,
Ti4+)xO19 (BaM + (Co2+,Ti4+)x) magnets for the qualitative study of the entire phenological development of
lettuce plants, in a permanent magnetic field.
References
YUJIE YANG et al. “Preparation of Al3+-Co2+ co-substituted M-type SrCaNd hexaferrites and their controlled magnetic properties”; Aip Advances 8, 075212 (2018). https://doi.org/10. 1063/1.5034451
LIM, J. P.; KANG, M. G.; KANG, Y. M. “Development of Multi-Cation-Doped M-Type Hexaferrite Permanent Magnets”; Appl. Sci. 2023, 13, 295-306. https://doi.org/10.3390/ app13010295
ZHANG, W. et al. “Structure, Spectra, Morphology, and Magnetic Properties of Nb5+ Ion-Substituted Sr Hexaferrites”. Magneto Chemistry, 2022, 8, 51. https://doi.org/10.3390/magnetochemistry8050051
YOU, J. Y.; LEE, K. H.; KANG, Y. M.; YOO, S. I. “Enhancement of the Magnetic Properties in Si4+-Li+-Substituted M-Type Hexaferrites for Permanent Magnets”. Appl. Sci. 2022, 12 12295. https://doi.org/10.3390/app122312295
VIVEK DIXIT et al. “Site preference and magnetic properties of Zn-Sn-substituted strontium hexaferrite”. J. Appl. Phys. 2019, 125, 173901. https://doi.org/10.1063/1.5084762
VIVEK DIXIT et al. “Site preference and magnetic properties of Ga/In-substituted strontium hexaferrite: An ab initio study”. J. Appl. Phys. 118, 203908 (2015). https://doi.org/10.1063/1.4936368
P. A MARIÑO CASTELLANOS; A. C. MORENO BORGES; G. OROZCO MELGAR; J. A. GARCÍA; E. GOVEA ALCAIDE. “Structural and magnetic study of the Ti4+-doped barium hexaferrite ceramic samples: Theoretical and experimental results”. Physica B: Condensed Matter (2011), 406, 3130–3136. https://doi.org/10.1016/j.physb.2011.03.084
P. A. MARIÑO CASTELLANOS et al. “Predictions and Magnetic Characterization of M-type Hexaferrites Doped with Two Cations in the Fe3+ Site”. American Journal of Engineering and Technology Management.2019, 4 (6): 83-90. https://doi.org/10.11648/j.ajetm.20190406.12
MOHAMMAD SARRAF et al. “Magnetic Field (MF) Applications in Plants: An Overview”. Plants 2020, 9, 1139-1167. https://doi.org/10.3390/plants9091139; www.mdoi.com/journal/plants
NEO E. NYAKANE; E. D. MARKUS; M. M. SEDIBE. “The Effects of Magnetic Fields on Plants Growth: A Comprehensive Review”, International Journal of Food Engineering, 2019, 5(1): 79-87, https://doi.org/10.18178/ijfe.5.1.79-87
SUNG YONG AN; IN-BO SHIM; CHUL SUNG KIM. “Mössbauer and magnetic properties of Co–Ti substituted barium hexaferrite nanoparticles”. Journal of Applied Physics, 2002, 91, 8465-8475; https://doi.org/10.1063/1.1452203
X. Z. ZHOU,; A. H. MORRISH; Z. W. LI; Y. K. HONG. “Site preference for Co2+ AND Ti4+ in CO-Ti substituted barium ferrite”. Ieee transactions on magnetics, 1991, 27:6 4654-4656. https://doi.org/10.1109/20.27890
A. G. BELOUS; O. I. V’YUNOV; E. V. PASHKOVA; V. P. IVANITSKII; O. N. GAVRILENKO. “Mössbauer Study and Magnetic Properties of M-Type Barium Hexaferrite Doped with Co+Ti and Bi+Ti Ions”. J. Phys. Chem. B, 2006, 110, 26477-26481. https://doi.org/10.1021/jp064628t
ARAFAT ABDEL HAMED ABDEL LATEF; MONA F. A. Dawood; Halimeh Hassanpour; Maryam Rezayian; Nabil A. Younes. “Impact of the Static Magnetic Field on Growth, Pigments, Osmolytes, Nitric Oxide, Hydrogen Sulfide Phenylalanine Ammonia-Lyase Activity, Antioxidant Defense System, and Yield in Lettuce”. Biology 2020, 9, 172, 1-19. https://doi.org/10.3390/biology9070172
ACUÑA, R.; NAGUELQUIN, F.; GARCÍA, F.; TORRES, J. “Application of magnetic fields (CM) and their relationship with recovery viability and vigor in aged seeds of Lactuca sativa L. Agro Sur 47(1):2019, 9-21. https://doi.org/10.4206/agrosur:2019.v47n1-04
ARAÚJO, S. et al. “Physical Methods for Seed Invigoration: Advantages and Challenges in Seed Technology”. Front. Plant Sci. (2016) 7:646, 1-12. https://doi.org/10.3389/fpls.2016.00646
PAUL GALLAND; ALEXANDER PAZUR. “Magnetoreception in plants”. J. Plant Res. (2005) 118:371-389. https://doi.org/10.1007/s10265-005-0246-y
MROCZEK ZDYRSKA, M.; TRYNIECKI, Ł.; KORNARZYŃSKI, K.; PIETRUSZEWSKI, S.; GAGOŚ, M. “Influence of magnetic field stimulation on the growth and biochemical parameters in Phaseolus vulgaris l”. Journal of Microbiology, Biotechnology & Food Sciences, 2016, 5(6): p548-551.https://doi.org/10.15414/jmbfs.2016.5.6.548-551
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Pedro Antonio Mariño-Castellanos, Eduardo Fernández-Santiesteban, Arles Vega-García, Yadir Hidaldo-Peña, Nuris Ludmila Castellanos-Hall
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
This journal provides immediate open access to its content, based on the principle that offering the public free access to research helps a greater global exchange of knowledge. Each author is responsible for the content of each of their articles.