Thermo-mechanical evaluation of light-cured dental composites


  • Oridayma Tarano-Artigas Centro de Biomateriales, Universidad de La Habana, La Habana, Cuba
  • Juan Valerio Cauich-Rodriguez Centro de Investigación Científica de Yucatán (CICY), Mérida, México
  • José Manuel Cervantes-Uc Centro de Investigación Científica de Yucatán (CICY), Mérida, México
  • Lucien Veleva-Muleshkova Centro de Investigación y Estudios Avanzados (CINVESTAV), Física Aplicada, Mérida, México
  • Yaymarilis Veranes-Pantoja Centro de Biomateriales, Universidad de La Habana, La Habana, Cuba


light-cured dental composites; aerosil OX50; nanofiller; glass transition temperature.


The aim of this study was to evaluate the thermo-mechanical properties of six light-cured
dental composites, prepared using aerosil OX50 as inorganic filler and two matrices: Bis-
GMA/tetraethyleneglycol dimethacrylate/-methacryloxypropyltrimethoxysilane and Bis-
GMA/triethyleneglycol dimethacrylate/-methacryloxypropyltrimethoxysilane. The initiator
system was based on the camphorquinone /N, N-dimethylaminoethyl methacrylate pair. The
filler was characterized by Infrared Spectroscopy to Fourier Transform, X-ray Diffraction and
Scanning Electron Microscopy. Dental composites were evaluated by Thermogravimetric
Analysis and Dynamic Mechanical Analysis. It was confirmed that aerosil OX50 is an
amorphous silicon dioxide, formed by spherical particles of nanometric size. Composites are
thermally stable up to 300 °C, which is suitable for their application. Three of the
experimental composites have adequate modulus of elasticity and glass transition
temperatures, both parameters being slightly higher than those of the Tetric Ceram ®
commercial composite used as reference. Considering the results obtained, it is possible to use
tetraethyleneglycol and triethyleneglycol dimethacrylates in the preparation of experimental
dental composites.


Convenio de Minamata sobre el Mercurio - texto y anexos. Programa de Naciones

Unidas para el Medio Ambiente. 2019, 3-15. Disponible en: Consulta: 9/2/2022.

SUSILA, A. V. and BALASUBRAMANIAN, V. “Correlation of elution and sensitivity

of cell lines to dental composites”, Dental Materials. 2016, 32(3), e63-e72. DOI:


AL AYYAN, W. et al. “A systematic review and meta-analysis of primary teeth caries

studies in Gulf Cooperation Council States”, The Saudi Dental Journal. 2018, 30(3), 175-

DOI: 10.1016/j.sdentj.2018.05.002.

KIM, J. W.; KIM, L. U.; and KIM, C. K. “Size Control of Silica Nanoparticles and Their Surface Treatment for Fabrication of Dental Nanocomposites”, Biomacromolecules.

, 8, 215–222. DOI: 10.1021/bm060560b.

ALTHAQAFI, K. A.; SATTERTHWAITE, J. and SILIKAS, N. “A review and current

state of autonomic self-healing microcapsules-based dental resin composites”, Dental

Materials. 2020, 36(3), 329-342. DOI: 10.1016/

URCAN, E. et al. “Real-time x CELLigence impedance analysis of the cytotoxicity of

dental composite components on human gingival fibroblasts”, Dental Materials. 2010,

(1), 51-58. DOI: 10.1016/

HABIB, E.; WANG, R. and ZHU, X. X. “Correlation of resin viscosity and monomer

conversion to filler particle size in dental composites”, Dental Materials. 2018, 34(10).

DOI: 10.1016/

PÉREZ-MONDRAGÓN, A. A. et al. “Preparation and evaluation of a BisGMA-free

dental composite resin based on a novel trimethacrylate monomer”, Dental Materials.

, 36(4), 542-550. DOI: 10.1016/

TEKIN, T. H. et al. “Full in-vitro analyses of new-generation bulk fill dental

composites cured by halogen light”, Materials Science and Engineering: C. 2017, 77,

-445. DOI: 10.1016/j.msec.2017.03.251.

KAMALAK, H. et al. “Physico-mechanical and thermal characteristics of

commercially available and newly developed dental flowable composites”, Journal of

Molecular Structure. 2018, 1156, 314-319. DOI: 10.1016/j.molstruc.2017.11.072.

BAROT, T.; RAWTANI, D. and KULKARNI, P. “Physicochemical and biological

assessment of silver nanoparticles immobilized Halloysite nanotubes-based resin

composite for dental applications”, Heliyon. 2020, 6(3), e03601. DOI:


HUANG, Q. et al. “The antibacterial, cytotoxic, and flexural properties of a composite

resin containing a quaternary ammonium monomer”, The Journal of Prosthetic Dentistry.

, 120, 609–616. DOI: 10.1016/j.prosdent.2017.12.017.

WANG, R.; HABIB, E. and ZHU, X. X. “Application of close-packed structures in

dental resin composites”, Dental Materials. 2017, 33(3), 288-293. DOI:


JERG, A. et al. “Modulation of gingival cell response towards dental composites”,

Dental Materials. 2018, 34(3), 412-426. DOI: 10.1016/

PÉREZ-MONDRAGÓN, A. A. et al. “Evaluation of biocompatible monomers as substitutes for TEGDMA in resin-based dental composites”, Materials Science and

Engineering: C. 2018, 93, 80-87. DOI: 10.1016/j.msec.2018.07.059.

SIDERIDOU, I. et al. “Water sorption characteristics of light-cured dental resins and

composites based on Bis-EMA/PCDMA”, Biomaterials. 2004, 25(2), 367-76. DOI:


PANTOJA, Y. V. Desarrollo de nuevas formulaciones de composites dentales. Tesis

en opción al grado científico de Doctor en Ciencias Químicas, Centro de Biomateriales,

Universidad de La Habana, Universidad de Oriente, La Habana, Cuba, 2007.

FRENZEL, N. et al. “Template assisted surface microstructuring of flowable dental

composites and its effect on microbial adhesion properties”, Dental Materials. 2016,

(3), 476-487. DOI: 10.1016/

MENG, J. et al. “Correlating cytotoxicity to elution behaviors of composite resins in

term of curing kinetic”, Materials Science and Engineering: C. 2017, 78, 413-419. DOI:


VAN LANDUYT, K. L. et al. “Nanoparticle release from dental composites”, Acta

Biomaterialia. 2014, 10(1), 365-374. DOI: 10.1016/j.actbio.2013.09.044.

SAEN, P. et al. “Physical characterization of unfilled and nanofilled dental resins:

Static versus dynamic mechanical properties”, Dentals Materials. 2016, 32(8), e185-97.

DOI: 10.1016/

FERRACANE, J. L. and PALIN, W. M. “10 - Effects of particulate filler systems on

the properties and performance of dental polymer composites”, Non-Metallic Biomaterials

for Tooth Repair and Replacement. 2013, 294-335. DOI: 10.1533/9780857096432.3.294.

CAO, W. et al. “Mechanical property and antibacterial activity of silver-loaded

polycation functionalized nanodiamonds for use in resin-based dental material

formulations”, Materials Letters. 2018, 220, 104-107. DOI: 10.1016/j.matlet.2018.03.027.

KARABELA, M. M. and SIDERIDOU, I. D. “Synthesis and study of properties of

dental resin composites with different nanosilica particles size”, Dental Materials. 2011,

(8), 825-835. DOI: 10.1016/

ALAYOLA, J. J. E. Efecto de la incorporación de nanoarcillas sobre las propiedades

de materiales compuestos dentales. Maester en Ciencias Materiales Poliméricos, Centro

de Investigaciones Científicas de Yucatán, A.C. Posgrado en materiales poliméricos,

Mérida, Yucatán, 2017.

SANTANA, I. L. “Thermal behavior of direct resin composites: glass transition temperature and initial degradation analyses”, Revista Odonto Ciência [online]. 2011,

(1), 50-55. DOI: 10.1590/S1980-65232011000100012.


mechanical thermal properties of the dental light-cured nanohybrid composite Kalore,

GC: Effect of various food/oral simulating liquids”, Dental Materials. 2015, 31(2), 154-

DOI: 10.1016/

SIDDIQUI, U. et al. “Analyses on mechanical and physical performances of nano-

apatite grafted glass fibers based dental composites”, Materials Chemistry and Physics.

, 263, 124188. DOI: 10.1016/j.matchemphys.2020.124188.



How to Cite

Tarano-Artigas , O. ., Cauich-Rodriguez, J. V. ., Cervantes-Uc, J. M. ., Veleva-Muleshkova , L. ., & Veranes-Pantoja, Y. . (2022). Thermo-mechanical evaluation of light-cured dental composites. Revista Cubana De Química, 34(2), 194–210. Retrieved from