Physic-chemical, phytochemical characterization and in vitro antioxidant activity of CUCUMIS SATIVUS l. vAR. mARKET MORE with magneto priming
Keywords:
Cucumis sativus; extractos alcohólicos y acuosos; concentraciones de mineralesAbstract
The aim of this study was to evaluate the effect of a static magnetic field with a magnetic induction of 60-110 mT on the bioactive compounds and antioxidant properties of Cucumis sativus L. var market more. Alcoholic and aqueous extracts were used to determine the chemical-physical properties, concentration of phenolic compounds, and antioxidant activity in vitro. Seeds treated with a static magnetic field showed an increase in mineral concentrations compared to untreated seeds. The same behavior was obtained in the physicochemical properties between the aqueous and ethanolic extracts. For phenolic compounds and antioxidant activity by DPPH radical scavenging, the aqueous extracts
of seeds treated with a static magnetic field presented higher values with respect to the control ethanolic extract. These results highlight the importance of using the static magnetic field in the quality and nutritional value of the seeds of this species
References
SARRAF, M., et al. Magnetic field (MF) applications in plants: An overview. Plants. 2020, 9 (9),
doi: https://doi.org/10.3390/plants9091139
MAFFEI, M. E. Magnetic field effects on plant growth, development, and evolution. Frontiers in
Plant Science. 2014, 5, 23-34. ISSN 1664-462X. doi: https://doi.org/10.3389/fpls.2014.00445
OCCHIPINTI, A.; DE SANTIS, A.; MAFFEI, M. E. Magnetoreception: an unavoidable step for
plant evolution? Trends in Plant Science. 2014, 19 (1), 1-4. ISSN 1360-1385. doi:
https://doi.org/10.1016/j.tplants.2013.10.007
RAZMJOO, J.; ALINIAN, S. Influence of magnetopriming on germination, growth, physiology, oil
and essential contents of cumin (Cuminum cyminum L.). Electromagnetic Biology and Medicine.
, 36 (4), 325-329. ISSN 1536-8378. doi: https://doi.org/10.1080/15368378.2017.1373661
SHINE, M. B.; GURUPRASAD, K. N.; ANAND, A. Effect of stationary magnetic field strengths
of 150 and 200 mT on reactive oxygen species production in soybean. Bioelectromagnetics. 2012, 33
(5), 428-437. ISSN 0197-8462. doi: https://doi.org/10.1002/bem.21702
MAURY, G. L., et al. Antioxidants in Plants: A Valorization Potential Emphasizing the Need for
the Conservation of Plant Biodiversity in Cuba. Antioxidants. 2020, 9 (11), 67-78. ISSN 2076-3921
(Print)
-3921. doi: https://doi.org/10.3390/antiox9111048
KHAN, A.; MISHRA, A.; HASAN, S. M.; USMANI, A.; UBAID, M.; KHAN, N.;
SAIDURRAHMAN, M. Biological and medicinal application of Cucumis sativus Linn. – review of
current status with future possibilities. Journal of Complementary and Integrative Medicine. 2022, 19
(4), 843-854. doi: https://doi.org/10.1515/jcim-2020-0240
ROLNIK, A.; OLAS, B. Vegetables from the Cucurbitaceae family and their products: Positive
effect on human health. Nutrition. 2020, 78 110788. ISSN 0899-9007. doi:
https://doi.org/10.1016/j.nut.2020.110788
MUKHERJEE, P. K.; NEMA, N. K.; MAITY, N.; SARKAR, B. K. Phytochemical and therapeutic
potential of cucumber. Fitoterapia. 2013, 84, 227-236. ISSN 0367-326X. doi:
https://doi.org/10.1016/j.fitote.2012.10.003
AFTAB, T.; REHMAN, K. H., (2020). Plant micronutrients deficiency and toxicity management,
Springer Nature. 1 ed, 241-255. ISBN: 978-3-030-49855-9 . doi: https://doi.org/10.1007/978-3-030-
-6
UTHPALA, T. G. G.; MARAPANA, U.; LAKMINI, P.; WETTIMUNY, D. Nutritional Bioactive
Compounds and Health Benefits of Fresh and Processed Cucumber (Cucumis Sativus L.). Sumerianz
Journal of Biotechnology. 2020, 2, 34-48, doi: https://doi.org/10.13140/RG.2.2.17510.04161
MANDEY, J. S.; WOLAYAN, F. R.; PONTOH, C. J.; SONDAKH, B. Phytochemical
characterization of cucumber (Cucumis sativus L.) seeds as candidate of water additive for organic
broiler chickens. Journal of Advanced Agricultural Technologies. 2019, 6 (1), pp 61-64. doi:
https://doi.org/10.18178/joaat.6.1.61-64
ALBAYRAK, S.; AKSOY, A.; ALBAYRAK, S.; SAGDIC, O. In vitro antioxidant and
antimicrobial activity of some Lamiaceae species. Iranian Journal of Science and Technology
(Sciences). 2013, 37 (1), 1-9. ISSN 1028-6276. https://ijsts.shirazu.ac.ir/article_1529_a25cd2f632
d65a8d4ad1771673b16d92.pdf
ZAMBRANO MORA, P., AND BUSTAMANTE PESANTES, K. E. Caracterización y estudio
fitoquímico de Justicia secunda valh (Sanguinaria, Singamochilla, Insulina). Revista Cubana de
Plantas Medicinales. 2017. 22, pp. 1-8. ISSN 1028-4796.
https://www.medigraphic.com/pdfs/revcubplamed/cpm-2017/cpm171p.pdf.
MINSAP (1991c). Medicamentos de origen vegetal: extractos y tinturas: proceso tecnológico La
Habana. Cuba.
PHAN-THIEN, K.-Y.; WRIGHT, G. C.; LEE, N. A. Inductively coupled plasma-mass
spectrometry (ICP-MS) and -optical emission spectroscopy (ICP–OES) for determination of essential minerals in closed acid digestates of peanuts (Arachis hypogaea L.). Food Chemistry. 2012, 134 (1),
-460. ISSN 0308-8146. doi: https://doi.org/10.1016/j.foodchem.2012.02.095
LAB. CIENCIAS AMBIENTALES, H. Procedimientos normalizados para determinación de
minerales. PNO No. 4. U. d. Hasselt. Bélgica. 2014.
MIRANDA M.; CUELLAR A. Farmacognosia y Química de los Productos Naturales. La
Habana, Cuba: Editorial Felix Varela MES. 2001, ISBN 978-959-258-129-6
PRIOR, R. L.; WU, X.; SCHAICH, K. Standardized Methods for the Determination of
Antioxidant Capacity and Phenolics in Foods and Dietary Supplements. Journal of Agricultural and
Food Chemistry. 2005, 53 (10), 4290-4302. ISSN 0021-8561. doi: https://doi.org/10.1021/jf0502698
PEÑARRIETA, J. M.; ALVARADO, J. A.; ÅKESSON, B.; BERGENSTÅHL, B. Total
antioxidant capacity and content of flavonoids and other phenolic compounds in canihua
(Chenopodium pallidicaule): An Andean pseudocereal. Molecular nutrition & food research. 2008,
(6), 708-717. ISSN 1613-4125. doi: https://doi.org/10.1002/mnfr.200700189
MENSOR, L. L.; MENEZES, F. S.; LEITÃO, G. G.; REIS, A. S.; SANTOS, T. C. D.; COUBE,
C. S.; LEITÃO, S. G. Screening of Brazilian plant extracts for antioxidant activity by the use of
DPPH free radical method. Phytotherapy Research. 2001, 15 (2), 127-130. ISSN 0951-418X. doi:
https://doi.org/10.1002/ptr.687
MURTHY, H. N.; DEWIR, Y. H.; DALAWAI, D.; AL-SUHAIBANI, N. Comparative
physicochemical analysis of seed oils of wild cucumber (Cucumis sativus var. hardwickii (Royle)
Alef.), cucumber (Cucumis sativus L. var. sativus), and gherkin (Cucumis anguria L.). South African
Journal of Botany. 2022, 145 186-191. ISSN 0254-6299. doi:
https://doi.org/10.1016/j.sajb.2021.06.004
KOCHHAR, S.; GUJRAL, S. K.,. Plant physiology: Theory and applications. 1er Edicion.
Editorial Cambridge University Press.2020, pp 100-134.ISBN:1108963471.
SALETNIK, B.; SALETNIK, A.; SŁYSZ, E.; ZAGUŁA, G.; BAJCAR, M.; PUCHALSKA-
SARNA, A.; PUCHALSKI, C. The Static Magnetic Field Regulates the Structure, Biochemical
Activity, and Gene Expression of Plants. Molecules. 2022, 27 (18), 5823. ISSN 1420-3049. doi:
https://doi.org/10.3390/molecules27185823
GOLDSWORTHY, A. in Effects of Electrical and Electromagnetic Fields on Plants and Related
Topics, Vol. (Ed. VOLKOV, A. G.), Springer Berlin Heidelberg, Berlin, Heidelberg, 247-267. ISBN
-3-540-37843-3. doi: https://doi.org/10.1007/978-3-540-37843-3_11
NIYI, O. H.; JONATHAN, A. A.; IBUKUN, A. O. Comparative Assessment of the proximate,
mineral composition and mineral safety index of peel, pulp and seeds of Cucumber (Cucumis sativus).
Open Journal of Applied Sciences. 2019, 9 (09), 691. doi: https://doi.org/10.4236/ojapps.2019.99056
ABDOLLAHI, F.; AMIRI, H.; NIKNAM, V.; GHANATI, F.; MAHDIGHOLI, K. Effects of
Static Magnetic Fields on the Antioxidant System of Almond Seeds. Russian Journal of Plant
Physiology. 2019, 66 (2), 299-307. ISSN 1608-3407. doi:
https://doi.org/10.1134/S102144371902002X
TAGHIZADEH, M.; NASIBI, F.; MANOUCHEHRI KALANTARI, K.; MOHSENI-
MOGHADAM, M. Modification of phytochemical production and antioxidant activity of
Dracocephalum kotschyi cells by exposure to static magnetic field and magnetite nanoparticles. Plant
Cell, Tissue and Organ Culture. 2021, 147 (2), 365-377. ISSN 0167-6857. doi:
https://doi.org/10.1007/s11240-021-02129-9
ABDEL LATEF, A. A. H.; DAWOOD, M. F. A.; HASSANPOUR, H.; REZAYIAN, M.;
YOUNES, N. A. Impact of the Static Magnetic Field on Growth, Pigments, Osmolytes, Nitric Oxide,
Hydrogen Sulfide, Phenylalanine Ammonia-Lyase Activity, Antioxidant Defense System, and Yield
in Lettuce. Biology. 2020, 9 (7), 172. ISSN 2079-7737. doi: https://doi.org/10.3390/biology9070172
CHIRICO, G.; ELIA, C. D.; AMBROSIO, N. D.; MASSA, R. Design and Evaluation of an
Applicator for Magnetopriming Treatments. IEEE Journal of Electromagnetics, RF and Microwaves
in Medicine and Biology. 2023, 7 (3), 245-250. ISSN 2469-7257. doi:
https://doi.org/10.1109/JERM.2023.3267659
FRANCO DALENOGARE, J., et al. Toxicity, Anti-Inflammatory, and Antioxidant Activities of
Cubiu (Solanum sessiliflorum) and Its Interaction with Magnetic Field in the Skin Wound Healing.
Evidence-Based Complementary and Alternative Medicine. 2022, Vol 2022 (1). pp 1-12. 7562569.
ISSN 1741-427X. doi: https://doi.org/10.1155/2022/7562569
MOHAMMADI, R.; ROSHANDEL, P. Alternation of Growth, Phenolic Content, Antioxidant
Enzymes and Capacity by Magnetic Field in Hyssopus officinalis under Water Deficit. International
Journal of Horticultural Science and Technology. 2020, 7 (2), 153-163. ISSN 2322-1461. doi:
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Javier Peña López, Yilan Fung Boix, Gabriel LLaurado Maury, Michiel Huybrechts, Ann Cuypers
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
This journal provides immediate open access to its content, based on the principle that offering the public free access to research helps a greater global exchange of knowledge. Each author is responsible for the content of each of their articles.