REMOVAL AQUEOUS ARSENIC SPECIES USING ELEMENTAL IRON AND ITS SPECIATION/DETECTION BY HPLC-ICPMS

Authors

  • María Maldonado-Santoyo Centro de Innovación Aplicada en Tecnologías Competitivas, México

Keywords:

arsenic speciation; iron nanoparticles; iron microparticles; pollution

Abstract

The use of elemental iron (nano and microparticles) for the removal of aqueous arsenic
species and its speciation by HPLC-ICPMS, was evaluated. The nanoparticles were
obtained by reacting of ferric chloride with sodium borohydride and, the microparticles
were commercial iron powder. The experiments were carried out for As(III), DMAs(V) and
As(V), individually and in mixture, at different times and were analyzed by HPLC-ICPMS.
The results show, that both forms of elemental iron, contribute the decrease in the initial
concentration of As(III) and As(V) by increasing the contact time, obtaining greater
changes in the presence of nanoparticles (99,9 %, 240 min) with adsorption capacity
(< 499,5 µg/g). For DMAs(V) there were not significant changes in its initial concentration.
This demonstrates the feasibility of elemental iron to remove some aqueous arsenic
species and, that the values depend on the chemical composition of arsenic, it may be
viable for inorganic species.

References

BHAT, A.; O´HARA, T.; TIAN, F.; SINGH, B.

"Review of analytical techniques for arsenic detection

and determination in drinking water". Environmental

Science: Advances, 2023, 2: 171-195. Doi:

http://doi.org/10.1039/d2va00218c

WHO. (2018). Arsénico. Consultado el 01/11/2022.

Disponible en: https://www.who.int/es/newsroom/fact-sheets/detail/arsenic.

CESEÑA QUIÑONEZ, J. I.; RAMOS RAMÍREZ,

E.; SERAFÍN MUÑOZ, A. H.; MORENO

PALMERIN, J.; ZANOR, G. A.; GUTIÉRREZ

ORTEGA, N. L. "Remoción de arsénico del agua para

consumo humano empleando un hidróxido doble

laminar Mg/Fe". Acta Universitaria, 2019, 29, 1-12.

Doi. http://dx.doi.org/10.15174/au.2019.2499

REID, M. S. et al. "Arsenic speciation analysis: A

review with an emphasis on chromatographic

separations". Trends in Analytical Chemistry, 2020,

, 115770, 1-14. Doi:

https://doi.org/10.1016/j.trac.2019.115770

NICOMEL, N. R.; LEUS, K.; FOLENS, K.; VAN

DER VOORT, P.; DU LAING, G. "Technologies for

arsenic removal from water: current status and future

perspectives". Int. J. Environ. Res. Public Health,

, 13(1), 62. Doi:

https://doi.org/10.3390/ijerph13010062

BALARAM, V.; COPIA, L.; SARAVANA

KUMAR, U.; MILLER, J.; CHIDAMBARAM, S.

"Pollution of water resources and application of ICPMS techniques for monitoring and management-A

comprehensive review". Geosystems and

Geoenvironment, 2023, 2(4), 100210. Doi:

https://doi.org/10.1016/j.geogeo.2023.100210

EL GUIATY, M. A.; EL KADI, A. O. S. "The

duality of arsenic metabolism: impact on human

health". Annual Review of Pharmacology and

Toxicology, 2023, 63, 341-358. Doi:

https://doi.org/10.1146/annurev-pharmtox-051921-

HABUDA STANIC, M.; NUJIC, M. "Arsenic

removal by nanoparticles: a review". Environ Sci

Pollut Res, 2015, 22, 8094-8123. Doi:

https://doi.org/10.1007/s11356-015-4307-z

KATSOYIANNIS, I. A.; ZOUBOULIS, A. I.;

MARTIN, J. "Kinetics of Bacterial As(III) Oxidation

and Subsequent As(V) Removal by Sorption onto

Biogenic Manganese Oxides during Groundwater

Treatment"

. Ind. Eng. Chem. Res., 2004, 43(2), 486-

Doi: https://doi.org/10.1021/ie030525a

BEDNAR, A. J.; GARBARINO, J. R.;

BURKHARDT, M. R.; RANVILLE J. F.;

WILDEMAN, T. R. "Field and laboratory arsenic

speciation methods and their application to naturalwater analysis". Water Research, 2004, 38(2):355-

Doi:

https://doi.org/10.1016/j.watres.2003.09.034

VILTRES, H.; ODIO, O. F.; BORJA, R.;

AGUILERA, Y.; REGUERA, E. “Magentite

nanoparticle for arsenic remotion” Journal of Physics:

Conf. Series, 2017, 792, 012078. Doi:

https://doi.org/10.1088/1742-6596/792/1/012078

LIU, P.; LIANG, Q.; LUO, H.; FANG, W.;

GENG, J. "Synthesis of nano-scale zero-valent

iron-reduced graphene oxide-silica nanocomposites for the efficient removal of arsenic

from aqueous solutions". Environ Sci Pollut Res Int, 2019, 26(32), 33507-33516. Doi:

https://doi.org/10.1007/s11356-019-06320-6

TERLECKA, E. "Arsenic speciation analysis in

water samples: a review of the hyphenated

techniques". Environ Monit Assess, 2005, 107, 259-

Doi: https://doi.org/10.1007/s10661-005-3109-z

CASTILLEJOS, A.; GATTI, L.M.; KERL, C. F.,

CHENNU, A.; KLATT, J. M. "Arsenic speciation

analysis in porewater by a novel colorimetric assay",

Science of The Total Environment, 2022, 827,

Doi:

https://doi.org/10.1016/j.scitotenv.2022.154155

KELLER, N. S.; STEFÁNSSON, A.;

SIGFÚSSON, B. "Determination of arsenic speciation

in sulfidic waters by Ion Chromatography HydrideGeneration Atomic Fluorescence Spectrometry (ICHG-AFS)". Talanta, 2014, 128, 466-472. Doi:

https://doi.org/10.1016/j.talanta.2014.04.035

JEONG, S.; LEE, H.; KIM, Y.; YOON, H.

"Development of a simultaneous analytical method to

determine arsenic speciation using HPLC-ICP-MS:

Arsenate, arsenite, monomethylarsonic acid,

dimethylarsinic acid, dimethyldithioarsinic acid, and

dimethylmonothioarsinic acid". Microchemical

Journal, 2017, 134, 295-300, Doi:

https://doi.org/10.1016/j.microc.2017.06.011

MONGA, Y. et al. "Sustainable synthesis of

nanoscale zerovalent iron particles for environmental

remediation". Chem Sus Chem, 2020, 13(13), 3288-

Doi: https://doi.org/10.1002/cssc.202000290

MONDAL, P.; MAJUMDER, C. B.; MOHANTY,

B. “Laboratory based approaches for arsenic

remediation from contaminated water: Recent

developments”. Journal of Hazardous Materials B,

, 137(1), 464-479. Doi:

https://doi.org/10.1016/j.jhazmat.2006.02.023

ZHANG, W. "Nanoscale iron particles for

environmental remediation: An overview". Journal of

Nanoparticle Research, 2003, 5, 323-332.

https://link.springer.com/article/10.1023/A:1025520116015

VILAS, J. L. "Nanotecnología como herramienta

para la recuperación de suelos". Consultado el 31 oct

Disponible. https://docplayer.es/30742148-

Jose-luis-vilas-vilela-departamento-de-quimica-fisicalaboratorio-de-quimica-macromolecular-upv-ehu.html

SIMEONOVA V.; RIVERA, M.; PIÑA, M.;

AVÍLES, M.; CASTREJÓN, S. "Evaluación de diversos

minerales para la remoción de arsénico de agua para

consumo humano". 1997. Consultado el 07/11/2022.

Disponible en:

https://www.semanticscholar.org/paper/Evaluaci%C3%

B3n-de-diversos-minerales-para-la-remoci%C3%B3nSimeonovaHuerta/c1a37c7677c9252a5c3f3661819d6d75e8717c72

BARRIENTOS, J. E.; MATUTES A. J. "Uso de

nanomateriales para la remoción de arsénico del agua

para consumo humano". Mundo Nano, 2013, 6(11).

Doi:

https://doi.org/10.22201/ceiich.24485691e.2013.11

BANG S.; KORFIATIS, G. P.; MENG, X.

“Removal of arsenic from water by zero-valent iron”.

J Hazard Mater, 2005, 121(1-3), 61-67. Doi:

https://doi.org/10.1016/j.jhazmat.2005.01.030

Published

2024-12-09

How to Cite

Maldonado-Santoyo, M. (2024). REMOVAL AQUEOUS ARSENIC SPECIES USING ELEMENTAL IRON AND ITS SPECIATION/DETECTION BY HPLC-ICPMS. Revista Cubana De Química, 36(2). Retrieved from https://cubanaquimica.uo.edu.cu/index.php/cq/article/view/5370

Issue

Section

Artículos

Most read articles by the same author(s)