Chromium (VI) and lead (II) adsorption about biomass of Kluyveromyces marxianus CCEBI 2011
Keywords:
adsorption; Kluyveromyces marxianus; chromium (VI); lead (II).Abstract
Adsorption minimizes the generation of toxic waste and the recovery of metal. The objective of the work was to study the bioadsorption of chromium (VI) and lead (II) using dry biomass of the strain Kluyveromyces marxianus CCEBI 2011. It was worked at different pH values and concentration levels. The determination of the chemical-physical parameters was carried out at the Geominera Oriente Company. Adsorption isotherms were carried out by the Langmuir, Freundlich and Dubinin-Radushkevich models, resulting in that the maximum bioadsorption capacity of chromium (VI) and lead (II) by biomass was 0,89 and 4,61 mg g-1, respectively. the removal percentages being greater than 90%. The mean adsorption free energy values obtained from the Dubinin-Radushkevich model in chromium (VI) and lead (II) were 10 000 and 15 811,4 kJ mol-1, respectively, showing that for these experimental conditions the adsorption process is of chemical nature.
References
MALONE, L. J. Introducción a la química. Segunda Edición. Editorial Limusa. México D: F. Mikac, N, 1999. ISBN: 9789681844387.
SERRAT, M. et al. “Influence of nutritional and environmental factors on ethanol and endopolygalacturonase co-production by Kluyveromyces marxianus CCEBI 2011”. International Microbiology. 2011, 14, 41–49. DOI: 10.2436/20.1501.01.134.
PAVASANT, P. et al. “Biosorption of Cu2+, Cd 2+, Pb 2+, and Zn 2+ using dried marine green macroalga Caulerpa lentillifera”. Bioresource Technology. 2006, 18, 2321–2329. DOI: 10.1016/j.biortech.2005.10.032
LLOYD and LOVLEY. “Biochemical and characterization of PpcA, a periplasmic c-type cytochrome in Geobacter sulfurreducens”. Biochemical Journal. 2003, 369(1), 153-161. DOI: 10. 1042/ BJ 20020597.
APHA. “Standard Methods for the examination of water and wastewater”. 23RD Edición. Ed. APHA. Washington D.C. USA. 2021.
TUR NARANJO, E. Bioadsorción de Plomo (II) por biomasa seca de Bacillus subtilis CCEBI 1032, Kluyveromyces marxianus CCEBI 2011 y Pseudomonas aeruginosa CCEBI 1044. (Tesis de Maestría), Universidad de Oriente, Santiago de Cuba, 2012.
JONG, T. and DAVID L., P. “Adsorption of Pb (II), Cu (II), Cd (II), Zn (II), Ni (II), Fe (II), and As (V) on bacterially produced metal sulfides”. Journal of Colloid and Interface Science. 2004, 275, 61–71. DOI: 10. 1016/ j. jcis.2004. 01. 046.
MITTAL, A. et al. “Adsorption of hazardous dye crystal violet from wastewater by waste materials”. Journal of Colloid and Interface Science. 2010, 343, 463-473. DOI: 10.1016/j.jcis.2009.11.060.
BALANTA GRANDE, D.; CARLOS, D.; ZULUAGA, F. “Extracción, identificación y caracterización de quitosano del micelio de Aspergillus niger y sus aplicaciones como material bioadsorbente en el tratamiento de aguas”. Revista Iberoamericana de Polímeros. 2010, 11(5), 297-316. https://www.reviberpol.org.
ESMAEILI, A. y AGHABABAI BENI, A. “Biosorption of nickel and cobalt from plant effluent by Sargassum glaucescens nanoparticles at new membrane reactor”. International Journal Environmental Science Technology. 2015,12, 2055-2064. DOI: 10.1007/s13762-014-0744-3.
ZHOU, J. L. y KIFF R., J. “The uptake of copper from aqueous solution by immobilized fungal biomass”. J. Chem. Technol. and Biotech. 1991, 52, 317-330. DOI: 10.1002/jctb.280520305.
ESMAEILI, A.; A. AGHABABAI, BENI. “A novel fixed-bed reactor design incorporating an electrospun PVA/chitosan nanofiber membrane”. Journal of Hazardous Materials. 2014, 280, 788-796. DOI: 10. 1016/ j. jhazmat. 08. 048.
BOPARAI, H. K.; JOSEPH, M.; O’CARROLL, D. M. “Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles”. Journal Hazardous Materials. 2011,186, 458-465. ISSN: 0304-3894. DOI: 10. 1016/ j. jhazmat. 2010. 11. 029.
ABDEL-GHANI, NOUR T.; GHADIR A. EL-CHAGHABY. “Biosorption for metal ions removal from aqueous solutions: A review of recent studies”, International Journal of Latest Research in Science and Technology. 2014, 3(1), 24-42. https://www.mnkjournals.com/journal/ijlrst/pdf/Volume_3_1_2014/10250.pdf.
GUIBAL, E.; ROULPH, C.; LE CLOIREC, P. “Uranium Biosorption by a Filamentous Fungus Mucor miehei pH Effect on Mechanisms and Performances of Uptake”. Water Research. 1992, 26(8), 1139-1145. DOI: 10. 1016/ 0043 – 1354(92) 90151 – S.
GUPTA, R. “Microbial biosorbents: Meeting challenges of heavy metal pollution in aqueous solutions”. Current Science. 2000, 78(8), http://www.citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.514.2293&rep=rep1&type=pdf.
PÉREZ SILVA, R M.; ÁBALOS RODRÍGUEZ, A.; GÓMEZ, J. M.; CANTERO, D. “Biosorption of chromium, copper, manganese and zinc by Pseudomonas aeruginosa AT18 isolated from a site contaminated with petroleum”. Bioresource Technology. 2009, 100, 1533–1538. Doi: 10.1016/j.biortech.2008.06.057
NGUYEN, T. H.; FLEET, G. H.; ROGERS, P. L. “Composition of the cell walls of several yeast species”. Applied, Microbiology and Biotechnology. 2009, 50, 206–212. DOI: 10.1007/s002530051278.
CARPIO, CARLA DEL JIMÉNEZ. Estudio de la bioadsorción de Pb (II) y Cd (II) usando como biomasa Escherichia coli aislada de las aguas contaminadas del río huatanay de la ciudad del cusco. (Tesis de doctorado), Perú, 2017.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Radames Hodelin Barrera, Taimi Bessy Horruitiner, Orlindes Calzado Lamela, Rosa María Pérez Silva
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
This journal provides immediate open access to its content, based on the principle that offering the public free access to research helps a greater global exchange of knowledge. Each author is responsible for the content of each of their articles.