Nanocompuestos con base polimérica resistente a impactos

Autores/as

  • Danay Gloria Praderes-Cabrera Centro de Investigación y Desarrollo Técnico (CIDT), La Habana, Cuba
  • Roberto de la Torre-González Centro de Investigación y Desarrollo Técnico (CIDT), La Habana, Cuba

Resumen

Con el objetivo de determinar las propiedades mecánicas y de impacto a nanocompuestos de polipropileno con nanotubos de carbono multipared al 1, 3 y 5 %, se le realizaron estudios morfológicos con el Microscópico Electrónico de Barrido, obteniendo micrografías con una dispersión uniforme de los nanotubos en la matriz polimérica. Además, mediante la técnica de Análisis Dinámico Mecánico y los ensayos Izod y de Tracción, se observó de manera general, que a medida que se aumenta el contenido de los nanotubos, las propiedades mecánicas se incrementan con respecto a la matriz polimérica, lo que demuestra el efecto de reforzamiento. Por otra parte, se ve reflejado el aumento del módulo de almacenamiento dinámico, indicando un incremento de la rigidez. De acuerdo con los resultados obtenidos, se concluye que los nanocompuestos obtenidos son más ligeros y resistentes frente a colisiones e impactos, los cuales pueden ser empleados en diferentes sectores de la industria.

Palabras clave: nanocompuestos, nanotubos de carbono, impacto, resistentes.

Citas

PETERS, S.T. Advanced composite materials and process. Handbook of plastics, elastomers and composites. 3ra Ed, McGraw-Hill, 1996.

HOSOKAWA, M. Nanoparticle Technology Handbook. Nanocomposite structure. Elsevier Scientific Publishing Company. 2006, p. 203. Cap. 4.

CHARTOFF, R. & SIRCAR, A. Encyclopedia of Polymer Science and Technology: Thermal Analysis of Polymers. University of Arizona: John Wiley & Sons. 2005, pp.1-86.

BREDEAU, S.; PEETERBROECK S.; BONDUEL, D.; ALEXANDRE, M. & DUBOIS, P. From carbon nanotube coatings to high-performance polymer nanocomposites. Polymer International. 2008, 57, 547–553.

DRESSELHAUS, S. R. & DRESSELHAUS. M. S. Physical properties of carbon nanotubes. Imperial College Press. Singapore. 1998, 74-82.

LIU, C. & CHOI, J. Improved dispersion of carbon nanotubes in polymers at high concentrations. Nanomaterials. 2012, 2 (4), 329–347.

PRASHANTHA, K.; SOULESTIN, J.; LACRAMPE, M.; CLAES, M.; DUPIN, G. & KRAWCZAK, P. Multi-walled carbon nanotube filled polypropylene nanocomposites based on masterbatch route: Improvement of dispersion and mechanical properties through PP-g-MA addition. Express Polymer Letters. 2008, 2 (10), 735-745.

MONIRUZZAMAN, M. y WINEY, K.I. Polymer nanocomposites containing carbon nanotubes. Macromolecules. 2006, 39, 5194-5205.

ZHAO, P.; WANG, K.; YANG, H.; ZHANG, Q.; DU, R. y FU, Q. Excellent tensile ductility in highly oriented injection-molded bars of polypropylene/carbon nanotubes composites. Polymer. 2007, 48, 5688. DOI: 10.1016/j.polymer. 2007.07.022.

VELASCO, C.; MARTÍNEZ, A. L. y CASTANO, V. M. Carbon nanotube-polymer nanocomposites: The role of interfaces, Comp. Interface. 2005, 11, 567-586.

BOROVANSKA, I.; KOTSILKOVA, R.; MONLEON, M.; VALLES, A. y DJOUMALIISKY, S. Thermal, mechanical and viscoelastic properties of compatibilized polypropylene/ multi-walled carbon nanotube nanocomposites. Journal of Elastomers & Plastics. 2016, 48 (7), 576–599. DOI: 10.1177/0095244315613617.

FEREIDOON, A.; ZAMANI, M.; SABET, A. &. DOLATI, SH. Experimental Investigation on Multi-wall Carbon Nanotube/Polypropylene Nanocomposite under High and Low Velocity Impact. International Conference on Nanotechnology and Biosensors. IPCBEE. 2011, p. 25.

CHANG, T.; JENSEN, L.; KISLIUK, A.; PIPES, R., PYRZ, R. y SOKOLOV, A. Microscopic mechanism of reinforcement in single-wall carbon nanotube/polypropylene nanocomposite. Polymer. 2005, 46, 439. DOI: 10.1016/j.polymer.2004.11.030.

PRASHANTHA, K.; SOULESTIN, J.; LACRAMPE, M.; KRAWCZAK, P.; DUPIN, G. y CLAES, M. Masterbatch-based multi-walled carbon nanotube filled polypropylene nanocomposites: Assessment of rheological and mechanical properties. Composites Science and Technology. 2009, 69, 1756–1763.

MCINTOSH, D; KHABASHESKU, V. y BARRERA. E. Benzoyl peroxide initiated in situ functionalization, processing, and mechanical properties of single-walled carbon nanotube−polypropylene composite fibers. J Phys Chem C. 2007, 111, 1592. DOI: 10.1021/jp065399d.

ZUO, W.; DONG, G.; HAK, K.; DAE, K.; CHOON, L.; LAWRENCE, K. & JOUNG, P. Mechanical and interfacial evaluation of CNT/polypropylene composites and monitoring of damage using electrical resistance measurements. Composites Science and Technology. 2013, 81, 69–75.

MAHDIEH, M.; ABDOLHOSSEIN, F. & ALIREZA, S. Multi-walled carbon nanotube-filled polypropylene nanocomposites: high velocity impact response and mechanical properties. Iran Polym J. 2012, 21, 887-894. DOI 10.1007/s13726-012-0097-z.

PETCHWATTANA, N.; COVAVISARUCH, S. & KOTPHETSANG, K. Multi-walled Carbon Nanotube Filled Polypropylene Nanocomposites: Electrical, Mechanical, Rheological, Thermal and Morphological Investigations. Proceedings of the 3rd International Conference on Industrial Application Engineering. 2015. DOI: 10.12792/iciae2015.063.

Norma D7028 – 07. Standard Test Method for Glass Transition Temperature (DMA Tg) of Polymer Matrix Composites by Dynamic Mechanical Analysis (DMA). 2007.

Norma D 638 - 03. Standard Test Method for Tensile Properties of Plastics. American Society for Testing and Materials IHS Intra/Spex technology and images. ASTM International. United States. 2004.

Norma D6110 – 10. Standard Test Method for Determining the Impact Resistance of Notched Specimens of Plastics. ASTM International. United States. 2010. DOI:10.1520/D6110-10.

Data sheet System 2000 Epoxy Resin. Part # - 2000, 2020, 2060, 2120. Fibre Glast Developments Corporation. 800.214.8579.

Descargas

Publicado

2019-11-04

Cómo citar

Praderes-Cabrera, D. G., & de la Torre-González, R. (2019). Nanocompuestos con base polimérica resistente a impactos. Revista Cubana De Química, 21–36. Recuperado a partir de https://cubanaquimica.uo.edu.cu/index.php/cq/article/view/5061

Número

Sección

Artículos