Materiales carbonosos nanoestructurados: obtención, agentes dopantes y aplicaciones electroquímicas
Palabras clave:
síntesis de materiales carbonosos; arcillas; fuentes de carbono.Resumen
Los materiales carbonosos en la actualidad tienen una gran importancia debido a que son utilizados en dispositivos electroquímicos capaces de almacenar la energía proveniente de fuentes renovables de generación de electricidad. En este trabajo se realizó una búsqueda sobre las características de los precursores y los métodos de síntesis y caracterización de materiales carbonosos con aplicaciones electroquímicas. Como resultado de esta revisión se obtiene que la vinaza de destilería y el licor de torula son fuentes potenciales de carbono para la síntesis de estos materiales. Además, que los métodos de síntesis que utilizan plantillas conducen a un mejoramiento de las propiedades eléctricas, las arcillas son las plantillas más utilizadas para la síntesis, pero se evidencia la posibilidad de utilizar zeolitas químicamente modificadas con estos fines. El dopaje con nitrógeno, fósforo y algunos óxidos metálicos conduce a un mejoramiento de las propiedades eléctricas de los materiales obtenidos.
Citas
2. ABIOYE, A. M. Y ANI, F. N. "Recent development in the production of activated carbon electrodes from agricultural waste biomass for supercapacitors: a review". Renewable and sustainable energy reviews. 2015, 52 1282-1293. ISSN: 1364-0321.
3. Alvarez, E. D. Nuevos materiales carbonosos para baterías de iones litio y condensadores electroquímicos. Tesis Doctoral. Instituto de Ciencia y Tecnología de Materiales. División de Materiales para la Energía. Universidad de la Habana. 2017. Revisado: 10/09/2020. Disponible en: http://200.14.55.73/handle/123456789.
4. YAN, Q.; LI, R.; TOGHIANI, H., et.al."Synthesis and characterization of carbon nanospheres obtained by hydrothermal carbonization of wood-derived and other saccharides". Trends in Renewable Energy. 2015, 1 (2), 119-128. ISSN: 2376-2144.
5. SANDI, G.; CARRADO, K.; WINANS, R., et.al. "Carbons for lithium battery applications prepared using sepiolite as inorganic template". Journal of the Electrochemical Society. 1999, 146 (10), 3644. ISSN: 1945-7111.
6. SANDI, G.; WINANS, R.; SEIFERT, S., et.al."In situ SAXS studies of the structural changes of sepiolite clay and sepiolite− carbon composites with temperature". Chemistry of materials. 2002, 14 (2), 739-742. ISSN: 0897-4756.
7. HU, J.;LI, H. Y HUANG, X. "Influence of micropore structure on Li-storage capacity in hard carbon spherules". Solid State Ionics. 2005, 176 (11-12), 1151-1159. ISSN: 0167-2738.
8. YOO, E.; KIM, J.; HOSONO, E., et.al."Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries". Nano letters. 2008, 8 (8), 2277-2282. ISSN: 1530-6984.
9. Fernández Saavedra, R. Materiales carbonosos nanoestructurados obtenidos en sólidos porosos para aplicaciones como electrodos en dispositivos electroquímicos. Tesis Doctoral. Departamento de Química Física Aplicada. Universidad Autónoma de Madrid. 2007. Revisado: 12/09/2020. Disponible en: https://repositorio.uam.es/handle.
10. WANG, Q.; LI, H.; CHEN, L., et.al. "Monodispersed hard carbon spherules with uniform nanopores". Carbon. 2001, 39 (14), 2211-2214. ISSN: 0008-6223.
11. GÓMEZ-AVILÉS, A.; DARDER, M.; ARANDA, P., et.al. "Multifunctional materials based on graphene-like/sepiolite nanocomposites". Applied Clay Science. 2010, 47 (3-4), 203-211. ISSN: 0169-1317.
12. YOON, S.-H.; PARK, C.-W.; YANG, H., et.al. "Novel carbon nanofibers of high graphitization as anodic materials for lithium ion secondary batteries". Carbon. 2004, 42 (1), 21-32. ISSN: 0008-6223.
13. WANG, Q.; LI, H.; CHEN, L., et.al"Novel spherical microporous carbon as anode material for Li-ion batteries". Solid State Ionics. 2002, 152 43-50. ISSN: 0167-2738.
14. WANG, Y.; SU, F.; WOOD, C. D., et.al. "Preparation and characterization of carbon nanospheres as anode materials in lithium-ion secondary batteries". Industrial & engineering chemistry research. 2008, 47 (7), 2294-2300. ISSN: 0888-5885
15. YANG, J.; ZHOU, X.-Y.; LI, J., et.al. "Study of nano-porous hard carbons as anode materials for lithium ion batteries". Materials Chemistry and Physics. 2012, 135 (2-3), 445-450. ISSN: 0254-0584.
16. FERNÁNDEZ‐SAAVEDRA, R.;ARANDA, P. Y RUIZ‐HITZKY, E. "Templated synthesis of carbon nanofibers from polyacrylonitrile using sepiolite". Advanced Functional Materials. 2004, 14 (1), 77-82. ISSN: 1616-301X
17. LI, J.; SHAO, C.; LI, B., et.al. "Synthesis of in-situ high nitrogen-doped helical carbonaceous nanofibers toward high-performance lithium-ion batteries". Materials Letters. 2017, 188 308-311. ISSN: 0167-577X.
18. ZALDIVAR, R. J.; KOBAYASHI, R. W.; RELLICK, G. S., Y OTROS. "Carborane-catalyzed graphitization in polyarylacetylene-derived carbon-carbon composites". Carbon. 1991, 29 (8), 1145-1153. ISSN: 0008-6223.
19. WU, Y.;FANG, S. Y JIANG, Y. "Carbon anodes for a lithium secondary battery based on polyacrylonitrile". Journal of power sources. 1998, 75 (2), 201-206. ISSN: 0378-7753.
20. HERNÁNDEZ, J. R. R.; LUEVANO, N. L.; SILVA, C. I. Z., et.al. "Obtención del carbón activado a partir de residuos de madera de la industria mueblera del estado de Aguascalientes". Conciencia Tecnológica. 2003, (23), 6. ISSN: 1405-5597.
21. TANG, K.; WHITE, R. J.; MU, X., et.al. "Hollow carbon nanospheres with a high rate capability for lithium‐based batteries". ChemSusChem. 2012, 5 (2), 400-403. ISSN: 1864-5631.
22. TANG, K.; WHITE, R. J.; MU, X., et.al. "Hollow carbon nanospheres with a high rate capability for lithium‐based batteries". ChemSusChem. 2012, 5 (2), 400-403. ISSN: 1864-5631.
23. GÓMES-AVILÉS, A.; DARDER, M.; ARANDA, P., et.al. "Multifunctional materials based on graphene-like/sepiolite nanocomposites". Applied Clay Science. 2010, 47 (3-4), 203-211. ISSN: 0169-1317.
24. SI, W.-J.; WU, X.-Z.; XING, W., et.al. "Bagasse-based nanoporous carbon for supercapacitor application". Journal of Inorganic Materials. 2011, 26 (1), 107-112. ISSN.
25.CHANFÓN CURBELO, J. M. Y LORENZO ACOSTA, Y. "Alternativas de tratamiento de las vinazas de destilería. Experiencias nacionales e internacionales". Centro azúcar. 2014, 41 (2), 56-67. ISSN: 0253-5777.
26. DOMENECH-LÓPEZ, F.; LORENZO-ACOSTA, Y.; LORENZO-IZQUIERDO, M., et.al. "Diagnóstico preliminar de las emisiones gaseosas en la industria de los derivados de la caña de azúcar". ICIDCA. Sobre los Derivados de la Caña de Azúcar. 2011, 45 (3), 30-37. ISSN: 0138-6204.
27. BERMÚDEZ, R. C.;HOYOS, J. A. Y RODRÍGUEZ, S. "Evaluación de la disminución de la carga contaminante de la vinaza de destilería por tratamiento anaerobio". Revista internacional de contaminación ambiental. 2000, 16 (3), 103-107. ISSN: 0188-4999.
28. BASANTA, R.; DELGADO, M. G.; MARTÍNEZ, J. C., et.al. "Sostenibilidad del reciclaje de residuos de la agroindustria azucarera: Una revisión sustainable recycling of waste from sugarcane agroindustry: A review". CYTA-Journal of Food. 2007, 5 (4), 293-305. ISSN: 1135-8122
29. IBARRA-CAMACHO, R.;LEÓN-DUHARTE, L. Y OSORIA-LEYVA, A. "Caracterización fisico-química de vinazas de destilerias". Revista Cubana de Química. 2019, 31 (2), 246-257. ISSN: 2224-5421.
30. IBARRA-CAMACHO, R.;LEÓN-DUHARTE, L. Y OSORIA-LEYVA, A. "Caracterización fisico-química de vinazas de destilerias". Revista Cubana de Química. 2019, 31 (2), 246-257. ISSN: 2224-5421
31. RODRÍGUEZ, B.; MORA, L.; OLIVEIRA, D., et.al. "Composición química y valor nutritivo de la levadura torula (Candida utilis), desarrollada sobre vinaza de destilería, en la alimentación de aves". Revista cubana de ciencia agrícola. 2011, 45 (3), 261-265. ISSN: 0034-7485
32. RODRÍGUEZ, B.; MORA, L.; OLIVEIRA, D., et.al. "Composición química y valor nutritivo de la levadura torula (Candida utilis), desarrollada sobre vinaza de destilería, en la alimentación de aves". Revista cubana de ciencia agrícola. 2011, 45 (3), 261-265. ISSN: 0034-7485
33. MOJICA-SÁNCHEZ, L.; RAMIREZ-GOMEZ, W.; RINCON-SILVA, N., et.al. "Síntesis de carbón activado proveniente de semillas de Eucalipto por activación física y química". Afinidad. 2012, 69 (559), ISSN: 2339-9686.
34. BUDINOVA, T.; EKINCI, E.; YARDIM, F., et.al. "Characterization and application of activated carbon produced by H3PO4 and water vapor activation". Fuel processing technology. 2006, 87 (10), 899-905. ISSN: 0378-3820
35. XU, W.-C.; TAKAHASHI, K.; MATSUO, Y., et.al. "Investigation of hydrogen storage capacity of various carbon materials". International Journal of Hydrogen Energy. 2007, 32 (13), 2504-2512. ISSN: 0360-3199
36. BOGDANOVIĆ, B.; BRAND, R. A.; MARJANOVIĆ, A., et.al. "Metal-doped sodium aluminium hydrides as potential new hydrogen storage materials". Journal of alloys and compounds. 2000, 302 (1-2), 36-58. ISSN: 0925-8388
37. BOGDANOVIĆ, B. Y SCHWICKARDI, M. "Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials". Journal of alloys and compounds. 1997, 253 1-9. ISSN: 0925-8388
38. ICHIKAWA, T.; ISOBE, S.; HANADA, N., et.al. "Lithium nitride for reversible hydrogen storage". Journal of Alloys and Compounds. 2004, 365 (1-2), 271-276. ISSN: 0925-8388.
39. JENSEN, C. M.; ZIDAN, R.; MARIELS, N., et.al. "Advanced titanium doping of sodium aluminum hydride:: segue to a practical hydrogen storage material?". International Journal of Hydrogen Energy. 1999, 24 (5), 461-465. ISSN: 0360-3199
40. KADIR, K.; KURIYAMA, N.; SAKAI, T., et.al. "Structural investigation and hydrogen capacity of CaMg2Ni9: a new phase in the AB2C9 system isostructural with LaMg2Ni9". Journal of Alloys and Compounds. 1999, 284 (1-2), 145-154. ISSN: 0925-8388
41. HERNADI, K.; FONSECA, A.; NAGY, J., et.al. "Catalytic synthesis of carbon nanotubes using zeolite support". Zeolites. 1996, 5 (17), 416-423. ISSN: 0144-2449.
42. HERNÁNDEZ, M. Á.; VELASCO, J. A.; ROJAS, F., et.al. "Evaluación de mesoporos y caracterización de arcillas del estado de Puebla, México". Revista internacional de contaminación ambiental. 2003, 19 (4), 183-190. ISSN: 0188-4999.
43. DIGUILIO, E.; CÓRDOBA, A.; MARCHENA, C. L., et.al. "Generación de mesoporosidad en zeolitas ZSM-11, BETA e Y por tratamiento alcalino". Matéria (Rio de Janeiro). 2018, 23 (2), ISSN: 1517-7076.
44. LÓPEZ, C. M.; SAZO, V.; PÉREZ, P., et.al. "Generación de mesoporosidad en zeolitas ZSM-5 sintetizadas en medio inorgánico". Avances en Química. 2011, 6 (2), 29-37. ISSN: 1856-5301
45. Arévalo Laitón, C. A. y Azuero Santana, E. Modificación y caracterización de zeolitas Y por tratamiento hidrotérmico. Facultad de Ciencias. Universidad de Ciencias Aplicadas y Ambientales. Bogotá. Colombia. 2019. Revisado: 10/09/2020. Disponible en: https://repository.udca.edu.co/bitstream.
46. WINANS, R. E. Y CARRADO, K. A. "Novel forms of carbon as potential anodes for lithium batteries". Journal of power sources. 1995, 54 (1), 11-15. ISSN: 0378-7753.
47. AKSOYLU, A. E.;FREITAS, M. M. A. Y FIGUEIREDO, J. L. "Bimetallic Pt–Sn catalysts supported on activated carbon: I. The effects of support modification and impregnation strategy". Applied Catalysis A: General. 2000, 192 (1), 29-42. ISSN: 0926-860X.
48. MILLÁN, L. M. R. "Materiales carbonosos para el acondicionamiento de gas de síntesis y remoción de alquitranes//Carbon materials for syngas conditioning and tar removal". Ingeniería Mecánica. 2017, 20 (2), 99-107. ISSN: 1815-5944.
49. NIETO-MÁRQUEZ, A.; LAZO, J. C.; ROMERO, A., Y OTROS. "Growth of nitrogen-doped filamentous and spherical carbon over unsupported and Y zeolite supported nickel and cobalt catalysts". Chemical Engineering Journal. 2008, 144 (3), 518-530. ISSN: 1385-8947.
50. Concheso Álvarez, A. Nuevos ánodos de carbono para baterías de ion-litio a partir de derivados del carbón y del petróleo. Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica. Universidad de Oviedo. 2011. Revisado: 20/09/2020. Disponible en: https://digital.csic.es/handle/10261/37675.
51. GONZÁLEZ-HURTADO, M.; RIEUMONT-BRIONES, J.; LÓPEZ-GOERNE, T., et.al"Síntesis y caracterización de materiales nanoestructurados obtenidos por el método sol-gel, cargados con drogas antiepilépticas". Revista Cubana de Química. 2014, 26 (3), 202-214. ISSN: 2224-5421.
52. DANGUILLECOURT-ALVAREZ, E.; DELLA SANTINA-MOHALLEM, N.; HUERTEMENDIA-MARIN, M., et.al "La paligorskita de Pontezuela como nanoreactor para obtener materiales carbonáceos tipo grafeno/arcilla". Revista CENIC Ciencias Químicas. 2016, 47, 56-63. ISSN: 2221-2442.
53. GÓMEZ‐AVILÉS, A.; DARDER, M.; ARANDA, P., et.al"Functionalized carbon–silicates from caramel–sepiolite nanocomposites". Angewandte Chemie International Edition. 2007, 46 (6), 923-925. ISSN: 1433-7851.
54. SANDI, G.; JOACHIN, H.; LU, W., et.al "Comparison of the electrochemichal performance of carbon produced from sepiolite with different surface characteristics". Journal of New Materials for Electrochemical Systems. 2003, 6 (2), 75-80. ISSN: 1480-2422.
55. LIU, G.; KANG, F.; LI, B., et.al. "Characterization of the porous carbon prepared by using halloysite as template and its application to EDLC". Journal of Physics and Chemistry of Solids. 2006, 67 (5-6), 1186-1189. ISSN: 0022-3697.
56. ALVAREZ, E. D.; CAPPE, E. P.; MOSQUEDA, Y., et.al. "Síntesis de materiales carbonaceos nanoestructurados". Revista CENIC. Ciencias Químicas. 2010, 41, 1-9. ISSN: 1015-8553.
57. BAKANDRITSOS, A.;STERIOTIS, T. Y PETRIDIS, D. "High surface area montmorillonite− carbon composites and derived carbons". Chemistry of materials. 2004, 16 (8), 1551-1559. ISSN: 0897-4756.
58. BAKANDRITSOS, A.; KOUVELOS, E.; STERIOTIS, T., et.al. "Aqueous and gaseous adsorption from montmorillonite− carbon composites and from derived carbons". Langmuir. 2005, 21 (6), 2349-2355. ISSN: 0743-7463.
59. WU, X.; LIU, C.; QI, H., et.al. "Synthesis and adsorption properties of halloysite/carbon nanocomposites and halloysite-derived carbon nanotubes". Applied Clay Science. 2016, 119 284-293. ISSN: 0169-1317.
60. LIU, D.; YUAN, P.; TAN, D., et.al. "Facile preparation of hierarchically porous carbon using diatomite as both template and catalyst and methylene blue adsorption of carbon products". Journal of colloid and interface science. 2012, 388 (1), 176-184. ISSN: 0021-9797.
61. WU, Z.-S.; REN, W.; XU, L., et.al. "Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries". ACS nano. 2011, 5 (7), 5463-5471. ISSN: 1936-0851.
62. LEE, K. T.; LYTLE, J. C.; ERGANG, N. S., et.al. "Synthesis and rate performance of monolithic macroporous carbon electrodes for lithium‐ion secondary batteries". Advanced Functional Materials. 2005, 15 (4), 547-556. ISSN: 1616-301X.
63. WEI, J.; ZHOU, D.; SUN, Z., et.al. "A controllable synthesis of rich nitrogen‐doped ordered mesoporous carbon for CO2 capture and supercapacitors". Advanced Functional Materials. 2013, 23 (18), 2322-2328. ISSN: 1616-301X.
64. WU, M.; CHEN, J.; WANG, C., et.al. "Non-graphitic PPy-based carbon nanotubes anode materials for lithium-ion batteries". Electrochimica Acta. 2013, 105, 462-467. ISSN: 0013-4686.
65. HU, J.; ZHANG, F.; SHAO, C., et.al. "Synthesis of self N-doped carbonaceous nanorods as stable lithium-ion battery anode materials". Materials Letters. 2018, 210 363-365. ISSN: 0167-577X.
66. WU, Y.;FANG, S. Y JIANG, Y. "Investigation of the effects of V2O5 addition on the electrochemical properties of carbon anodes". Journal of power sources. 1998, 75 (1), 167-170. ISSN: 0378-7753.
67. LOWELL, C. "Solid solution of boron in graphite". Journal of the American Ceramic Society. 1967, 50 (3), 142-144. ISSN: 0002-7820.
68. JONES, L. Y THROWER, P. "Influence of boron on carbon fiber microstructure, physical properties, and oxidation behavior". Carbon. 1991, 29 (2), 251-269. ISSN: 0008-6223.
69. LE, H. T.; DANG, T.-D.; CHU, N. T., et.al. "Synthesis of nitrogen-doped ordered mesoporous carbon with enhanced lithium storage performance from natural kaolin clay". Electrochimica Acta. 2020, 332, 135-399. ISSN: 0013-4686.
70. SAROJA, A. P. V. K.; GARAPATI, M. S.; SHYIAMALADEVI, R., et.al. "Facile synthesis of heteroatom doped and undoped graphene quantum dots as active materials for reversible lithium and sodium ions storage". Applied Surface Science. 2020, 504 144-430. ISSN: 0169-4332.
71. HUANG, H.;KELDER, E. Y SCHOONMAN, J. "Graphite–metal oxide composites as anode for Li-ion batteries". Journal of Power sources. 2001, 97, 114-117. ISSN: 0378-7753.
72. ZHANG, R.;LEE, J. Y. Y LIU, Z. "Pechini process-derived tin oxide and tin oxide–graphite composites for lithium-ion batteries". Journal of power sources. 2002, 112 (2), 596-605. ISSN: 0378-7753.
73. DOEFF, M. M.; WILCOX, J. D.; KOSTECKI, R., et.al. "Optimization of carbon coatings on LiFePO4". Journal of power sources. 2006, 163 (1), 180-184. ISSN: 0378-7753.
74. TAKAMURA, T.; SUMIYA, K.; SUZUKI, J., et.al. "Enhancement of Li doping/undoping reaction rate of carbonaceous materials by coating with an evaporated metal film". Journal of power sources. 1999, 81 368-372. ISSN: 0378-7753.
75. PRÍAS-BARRAGÁN, J. J.;ECHEVERRY-MONTOYA, N. A. Y ARIZA-CALDERÓN, H. "Fabricación y caracterización de carbón activado y de nanoplaquetas de carbón a partir de Guadua angustifolia Kunth para aplicaciones en electrónica". Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales. 2015, 39 (153), 444-449. ISSN: 2382-4980.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Esta revista proporciona un acceso abierto inmediato a su contenido, basado en el principio de que ofrecer al público un acceso libre a las investigaciones ayuda a un mayor intercambio global de conocimiento. Cada autor es responsable del contenido de cada uno de sus artículos.