PREPARACIÓN EN MEDIO ACUOSO DE RECUBRIMIENTOS AMORFOS DE TiO2 SOBRE PARTÍCULAS DE LNMO

Autores/as

  • Ana Laura Díaz-Perera Instituto de Ciencia y Tecnología de Materiales, Universidad de La Habana, La Habana, Cuba
  • Carlos Ricardo Milián-Pila Instituto de Ciencia y Tecnología de Materiales, Universidad de La Habana, La Habana, Cuba
  • Manuel Ávila-Santos Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada (CICATA-Legaria), Instituto Politécnico Nacional, Ciudad de México, México
  • Yodalgis Mosqueda-Laffita Instituto de Ciencia y Tecnología de Materiales, Universidad de La Habana, La Habana, Cuba
  • Eduardo Lázaro Pérez-Cappe Instituto de Ciencia y Tecnología de Materiales, Universidad de La Habana, La Habana, Cuba

Palabras clave:

recubrimiento superficial amorfo; LNMO; TiO2; baterías de ion litio.

Resumen

Translator        

 

El LiNi0.5Mn1.5O4 (LNMO) es un material prometedor para cátodos de alto voltaje en las baterías de ion litio, pero por reacciones con el electrolito, su capacidad se degrada. Esto puede evitarse con recubrimientos superficiales del material activo del cátodo. Se utiliza el método citrato en medio acuoso para recubrir el LiNi0.5Mn1.5O4 con TiO2 amorfo. Se obtuvieron tres recubrimientos, y se evaluó la composición, morfología, estabilidad térmica y conductividad electrónica. Se emplearon para la caracterización fluorescencia de rayos X, microscopía electrónica de barrido, difracción de rayos X, espectroscopía Raman y espectroscopía infrarroja con reflectancia total atenuada. La conductividad electrónica se midió por el método de Kelvin. Entre los recubrimientos preparados, se propone el LNMO-T3, pues la fase amorfa de TiO2 cubrió homogéneamente las partículas de LNMO con una morfología que se asemeja al recubrimiento físico de tipo núcleo-capa, con una mayor estabilidad térmica y una conductividad electrónica similar a la del material núcleo LNMO.

Biografía del autor/a

Ana Laura Díaz-Perera, Instituto de Ciencia y Tecnología de Materiales, Universidad de La Habana, La Habana, Cuba

Translator        

 

 

Carlos Ricardo Milián-Pila, Instituto de Ciencia y Tecnología de Materiales, Universidad de La Habana, La Habana, Cuba

Translator        

 

 

Manuel Ávila-Santos, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada (CICATA-Legaria), Instituto Politécnico Nacional, Ciudad de México, México

Translator        

 

 

Yodalgis Mosqueda-Laffita, Instituto de Ciencia y Tecnología de Materiales, Universidad de La Habana, La Habana, Cuba

Translator        

 

 

Eduardo Lázaro Pérez-Cappe, Instituto de Ciencia y Tecnología de Materiales, Universidad de La Habana, La Habana, Cuba

Translator        

 

 

Citas

KUENZEL, M. et al. “Crystal engineering of

TMPOx-coated LiNi0. 5Mn1. 5O4 cathodes for highperformance lithium-ion batteries”. Materials Today.

, 39, 127-136.

https://doi.org/10.1016/j.mattod.2020.04.003

QURESHI, Z. A. et al. “Impact of coatings on the

electrochemical performance of LiNi0.5Mn1.5O4

cathode materials: A focused review”. Ceramics

International. 2022, 48(6), 7374-7392.

https://doi.org/10.1016/j.ceramint.2021.12.118

WU, P.; ZHANG, Y. “Enhanced Electrochemical

Performance of Zr4+ and Co3+ doped LiNi0.65Mn0.35O2

Cathode Material for Lithium Ion Batteries”. International Journal of Electrochemical Science.

, 17(6), 220646.

https://doi.org/10.20964/2022.06.48

CHEN, T. et al. “The CeF4-coated spinel LiNi0.5Mn1.5O4

with improved electrochemical performance for 5 V

lithium-ion batteries”. Journal of Materials Science:

Materials in Electronics. 2022, 33(15), 11712-11724.

https://doi.org/10.1007/s10854-022-08137-5

PILLAI, A. M. et al. “Surface engineering of

Li1.5Ni0.25Mn0.75O2.5 cathode material using TiO2

nanoparticles: An approach to improve

electrochemical performance and thermal stability”.

Journal of Alloys and Compounds. 2024 976, 173064.

https://doi.org/10.1016/j.jallcom.2023.173064

DAI, S. et al. “Enhanced high-rate cycling

performance of LiMn2O4 cathode materials by coating

nano-TiO2”. International Journal of Materials

Research. 2023, 114(1), 7-15.

https://doi.org/10.1515/ijmr-2022-0070

WAGEMAKER, M. et al. “Two phase morphology

limits lithium diffusion in TiO(2)(anatase): a (7)Li

MAS NMR study”. Journal of the American

Chemical Society. 2001, 123(46), 11454-11461.

https://doi.org/10.1021/ja0161148

MOITZHEIM, S.; DE GENDT, S.; VEREECKEN,

P. M. “Investigation of the Li-Ion Insertion

Mechanism for Amorphous and Anatase TiO2 ThinFilms”. Journal of The Electrochemical Society. 2019,

(2), A1. https://doi.org/10.1149/2.1091816jes

YILDIRIM, H.; GREELEY, J.;

SANKARANARAYANAN, S. K. “Effect of

concentration on the energetics and dynamics of Li

ion transport in anatase and amorphous TiO2”. The

Journal of Physical Chemistry C. 2011, 115(31),

-15673.

https://pubs.acs.org/doi/10.1021/jp202514j

HAO, X.; BARTLETT, B. M. “Improving the

Electrochemical Stability of the High-Voltage Li-Ion

Battery Cathode LiNi0.5Mn1.5O4 by Titanate-Based

Surface Modification”. Journal of The

Electrochemical Society . 2013, 160(5), A3162.

https://doi.org/10.1149/2.025305jes

SONG, Y. W. et al. “Surface Modification of

High Voltage Spinel LiNi0.5Mn1.5O4 Cathode Material

Manufactured via Co-precipitation”. Journal of The

Electrochemical Society . 2024, 171(5), 050558.

https://doi.org/10.1149/1945-7111/ad4e6f

FEINER, A. S.; MCEVOY, A. J.. “The Nernst

Equation”. Journal of Chemical Education. 1994,

(6), 493. https://doi.org/10.1021/ed071p493

DAKANALI, M. et al. “A New Dinuclear

Ti(IV)−Peroxo−Citrate Complex from Aqueous

Solutions. Synthetic, Structural, and Spectroscopic

Studies in Relevance to Aqueous

Titanium(IV)−Peroxo−Citrate Speciation”. Inorganic

Chemistry. 2003, 42(15), 4632-4639.

https://doi.org/10.1021/ic0343051

SAVINKINA, E. V. ET AL. “Introduction of

peroxo groups into titania: Preparation,

characterization and properties of the new peroxocontaining phase”. CrystEngComm. 2015, 17(37),

-7123. https://doi.org/10.1039/C5CE01090J

WANG, L. et al. “A comparative study of Fd-3m

and P4332 “LiNi0.5Mn1.5O4”. Solid State Ionics. 2011,

(1), 32-38.

https://doi.org/10.1016/j.ssi.2011.04.007

NAKAMOTO, K. Infrared and Raman Spectra of

Inorganic and Coordination Compounds, Part A:

Theory and Applications in Inorganic Chemistry. 6ta

Edición. New Jersey: Wiley, 2008. ISBN: 978-0-471-

-2

BICHARA, L. C. et al. “Vibrational Study and

Force Field of the Citric Acid Dimer Based on the

SQM Methodology”. Advances in Physical

Chemistry. 2011, 2011 347072.

https://doi.org/10.1155/2011/347072

WU, H.; CHAN, M.; CHAN, C. “FTIR

Characterization of Polymorphic Transformation of

Ammonium Nitrate”. Aerosol Science and

Technology. 2007, 41, 581-588.

https://doi.org/10.1080/02786820701272038

BANERJEE, S.; KUMAR, A.; DEVI, P.

“Preparation of nanoparticles of oxides by the citratenitrate process”. Journal of Thermal Analysis and

Calorimetry. 2011, 104, 859-867.

https://doi.org/10.1007/s10973-011-1525-6

ZHANG, B.; WANG, Z.; & GUO, H.. “Effect of

annealing treatment on electrochemical property of

LiNi0.5Mn1.5O4 spinel”. Transactions of Nonferrous

Metals Society of China. 2007, 17(2), 287-290.

https://doi.org/10.1016/S1003-6326(07)60086-7

ZHONG, Q. et al. “Synthesis and

Electrochemistry of LiNixMn2−xO4”. Journal of The

Electrochemical Society. 1997, 144(1), 205.

https://doi.org/10.1149/1.1837386

ADAMCZYK, A.; DŁUGOŃ, E. “The FTIR

studies of gels and thin films of Al2O3-TiO2 and

Al2O3-TiO2-SiO2 systems”. Spectrochimica Acta Part

A: Molecular and Biomolecular Spectroscopy. 2012,

, 11-17. https://doi.org/10.1016/j.saa.2011.12.018

OKUDUR, F. U. et al. “Ti surface doping of

LiNi0.5Mn1.5O4−δ positive electrodes for lithium ion

batteries”. RSC Advances. 2018, 8, 7287-7300.

https://doi.org/10.1039/C7RA12932G

BHATIA, A. et al. “Detailed redox mechanism

and self-discharge diagnostic of 4.9 V LiMn1.5Ni0.5O4

spinel cathode revealed by Raman spectroscopy”.

Journal of Materials Chemistry A. 2021, 9, (13496-

. https://doi.org/10.1039/D1TA00989C

HIROI, Z. “Inorganic structural chemistry of

titanium dioxide polymorphs”. Inorganic Chemistry.

, 61(22), 8393-8401.

https://pubs.acs.org/doi/10.1021/acs.inorgchem.2c009

CHEN, Z. et al. “Role of surface coating on

cathode materials for lithium-ion batteries”. Journal

of Materials Chemistry. 2010, 20(36), 7606-7612.

https://doi.org/10.1039/C0JM00154F

MUNIR, S. et al. “Effect of carrier concentration

on the optical band gap of TiO2 nanoparticles”.

Materials & Design. 2016, 92, 64-72.

https://doi.org/10.1016/j.matdes.2015.12.022

DENG, J. et al. “Improving the fast discharge

performance of high-voltage LiNi0.5Mn1.5O4 spinel by

Cu2+, Al3+, Ti4+ tri-doping”. Journal of Alloys and

Compounds. 2016, 677, 18-26.

https://doi.org/10.1016/j.jallcom.2016.03.256

Descargas

Publicado

2025-06-10

Cómo citar

Díaz-Perera, A. L., Milián-Pila, C. R., Ávila-Santos, M., Mosqueda-Laffita, Y., & Pérez-Cappe, E. L. (2025). PREPARACIÓN EN MEDIO ACUOSO DE RECUBRIMIENTOS AMORFOS DE TiO2 SOBRE PARTÍCULAS DE LNMO. Revista Cubana De Química, 37(1), 1–14. Recuperado a partir de https://cubanaquimica.uo.edu.cu/index.php/cq/article/view/5401

Número

Sección

Artículos