The usefulness of biotinylated h1gag1584 gag gene probe to label-free electrochemical detection proviral DNA for HIV-1

Authors

Keywords:

probe H1Gag1584; Graphite-epoxy; Gold; Genosensor; HIV-1; DNA.

Abstract

The aim of the study is to demonstrate that the biotinylated 19 base oligonucleotide probe of the gag gene H1Gag1584 can be used as a molecular recognition element for the detection of HIV-1 proviral DNA, in two electrochemical detection systems of free laber. Two free leber electrochemical detection systems were evaluated: an impedimetric DNA genosensor using a self-assembled biotin monolayer (SAM) and a voltammetric DNA genosensor by modifying a new epoxy graphite transducer with graphene oxide. The results obtained in this study showed that the biotinylated 19-base oligonucleotide probe of the gag gene H1Gag1584 can be used as a molecular recognition element for the detection of HIV-1 proviral DNA, in two electrochemical detection systems of free labels.

References

1. Paniel, N., et al., “Selection of DNA aptamers against penicillin G using Capture-SELEX for the development of an impedimetric sensor”. Talanta. 2017, 162, 232-240. ISSN: 0039-9140.
2. Paleček, E. “NUCLEIC ACIDS | Electrochemical Methods”. In Enyclopedia of Analytical Science. 2th Edition. P.W.T. Poole, Editor: Elsevier: Oxford, 2005, pp. 399-408. ISBN: 978-0-12-369397-6.
3. Erdem, A., et al., “Rigid carbon composites: a new transducing material for label-free electrochemical genosensing”. Journal of Electroanalytical Chemistry. 2004, 567(1), 29-37. ISSN: 1572-6657.
4. Zacco, E., M.I. Pividori, and S. Alegret. “Electrochemical biosensing based on universal affinity biocomposite platforms”. Biosensors and Bioelectronics. 2006, 21(7), 1291-1301. ISSN: 0956-5663.
5. Castañeda, M.T., S. Alegret, and A. Merkoçi. “Chapter 38 Gold nanoparticles in DNA and protein analysis”. In Comprehensive Analytical Chemistry, S. Alegret and A. Merkoçi, Editors. 2007, Elsevier. pp. 941-958. ISBN: 0166-526X.
6. Ozsoz, M., ed. Electrochemical DNA biosensors. 2012, CRC Press. 400. ISBN 13: 978-9-81430-398-9.
7. Hashemi, P., et al., “Fabrication of a novel impedimetric sensor based on l-Cysteine/Cu(II) modified gold electrode for sensitive determination of ampyra”. Analytica Chimica Acta. 2017. ISSN 0003-2670.
8. Williams, E., et al., “Rapid electrochemical genosensor assay using a streptavidin carbon-polymer biocomposite electrode”. Biosensors and Bioelectronics. 2003, 19(3), 165-175. ISSN 0956-5663.
9. Hernández-Santos, D., M.B. González-García, and A. Costa-García. “Procedure 37 Genosensor on streptavidin-modified thick-film carbon electrodes for TNFRSF21 PCR products”. In Comprehensive Analytical Chemistry, S. Alegret and A. Merkoçi, Editors. 2007, Elsevier. p. e257-e264. ISBN 0166-526X.
10. Blanco, M., et al., “HIV-1 genetic variability in Cuba and implications for transmission and clinical progression”. MEDICC review. 2015, 17, 25-31. ISSN 1555-7960.
11. Cham, F., et al., “Development of a One-Tube Multiplex Reverse Transcriptase-Polymerase Chain Reaction Assay for the Simultaneous Amplification of HIV Type 1 Group M gag and env Heteroduplex Mobility Assay Fragments”. AIDS Research and Human Retroviruses. 2000, 16(15),1503-1505. ISSN 0889-2229.
12. Heyndrickx, L., et al., “Simplified Strategy for Detection of Recombinant Human Immunodeficiency Virus Type 1 Group M Isolates bygag/env Heteroduplex Mobility Assay”. Journal of virology. 2000,74(1), 363-370. ISSN 0022-538X.
13. Balbin Tamayo, A.I., et al., “Biotin self-assembled monolayer for impedimetric genosensor for direct detection of HIV-1”. MICROCHEMICAL JOURNAL. 2020, 153. ISSN 0026-265X.
14. Balbin-Tamayo, A.I., et al., “Comportamiento electroquímico de un novedoso electrodo grafito-epóxido modificado para inmovilización covalente de ADN”. Revista Cubana de Química. 2017, 29(1), 115-132. ISSN 2224-5421.
15. Ferreira, A.A.P., et al., “Optimization of incubation time of protein Tc85 in the construction of biosensor: Is the EIS a good tool?”. Journal of Electroanalytical Chemistry. 2010, 643(1-2), 1-8. ISSN 1572-6657.
16. Walsh, M.K., X. Wang, and B.C. Weimer. “Optimizing the immobilization of single-stranded DNA onto glass beads”. Journal of Biochemical and Biophysical Methods. 2001, 47(3), 221-231. ISSN 0165-022X.
17. Ocaña, C. and M.d. Valle. “A comparison of four protocols for the immobilization of an aptamer on graphite composite electrodes”. Microchim Acta. 2014, (181), 355-363. ISSN: 1436-5073.
18. Pividori, M.I., et al., “Procedure 30 Electrochemical determination of Salmonella spp. based on GEC electrodes”. In Comprehensive Analytical Chemistry, S. Alegret and A. Merkoçi, Editors. 2007, Elsevier. p. e213-e219. ISBN 0166-526X.
19. Roche Molecular Systems, I. COBAS® AmpliPrep/COBAS® TaqMan®HIV-1 Qualitative Test, version 2.0. 2015; Available from: http://www.roche-diagnostics.us/patents/.
20. Chalaya, T., et al., “Improving specificity of DNA hybridization-based methods”. Nucleic acids research. 2004, 32(16), e130-e130. 1362-4962 0305-1048. ISSN 1362-4962.
21. Stefani, M.M.A., et al., “Molecular screening shows extensive HIV-1 genetic diversity in Central West Brazil”. Journal of Clinical Virology. 2007, 39(3), 205-209. ISSN 1386-6532.
22. Balbin Tamayo A I, et al., “Free-label electrochemical detection of of HIV-1 proviral DNA in clinical sample”. International Journal of Biosensors & Bioelectronics. 2018, 4(5), 217-219. ISSN: 2573-2838.
23. Li, S., et al., “A high-performance DNA biosensor based on the assembly of gold nanoparticles on the terminal of hairpin-structured probe DNA”. Sensors and Actuators B: Chemical. 2016, 223, 861-867. ISSN 0925-4005.
24. Uliana, C.V., G.S. Garbellini, and H. Yamanaka. “Evaluation of the interactions of DNA with the textile dyes Disperse Orange 1 and Disperse Red 1 and their electrolysis products using an electrochemical biosensor”. Sensors and Actuators B: Chemical. 2013, 178(Supplement C), 627-635. ISSN 0925-4005.
25. Wang, J., A.-N. Kawde, and M. Musameh. “Carbon-nanotube-modified glassy carbon electrodes for amplified label-free electrochemical detection of DNA hybridization”. Analyst. 2003, 128(7), 912-916. ISSN 0003-2654.
26. Pividori, M.I., A. Merkoçi, and S. Alegret. “Electrochemical genosensor design: immobilisation of oligonucleotides onto transducer surfaces and detection methods”. Biosensors and Bioelectronics. 2000, 15(5), 291-303. ISSN 0956-5663.
27. Delwart, E.L., et al., “Genetic Subtyping of Human Immunodeficiency Virus Using a Heteroduplex Mobility Assay”. Cold Spring Harbor Laboratory. 1995, (4), 202-216. ISSN 1054-9805.
28. Erdem, A., “Chapter 19 Genosensor technology for electrochemical sensing of nucleic acids by using different transducers”. In Comprehensive Analytical Chemistry, S. Alegret and A. Merkoçi, Editors. 2007, Elsevier. p. 403-411. ISBN 0166-526X.
29. Paleček, E. and F. Jelen. “Electrochemistry of Nucleic Acids, in Perspectives in Bioanalysis”, F.S. Emil Paleček and J. Wang, Editors. 2005, Elsevier. p. 73-173. ISBN1871-0069.

Published

2021-10-26

How to Cite

Balbin-Tamayo, A. I., López-Rizo, L. S., Yamanaka, H., Mardini-Farias, P. A., & Esteva-Guas, A. M. (2021). The usefulness of biotinylated h1gag1584 gag gene probe to label-free electrochemical detection proviral DNA for HIV-1. Revista Cubana De Química, 33(3), 367–382. Retrieved from https://cubanaquimica.uo.edu.cu/index.php/cq/article/view/5191

Issue

Section

Artículos