La utilidad del oligonucleótido biotinilado del gen gag h1gag1584 para la detección electroquímica sin mediador del ADN proviral del VIH-1

Autores/as

Palabras clave:

sonda H1Gag1584; Grafito-epoxi; Oro; Genosensor; VIH-1; ADN

Resumen

El objetivo del estudio es demostrar que la sonda de oligonucleótidos de 19 bases biotinilada del gen gag H1Gag1584 puede utilizarse como elemento de reconocimiento molecular para la detección de ADN provírico del VIH-1, en dos sistemas de detección electroquímica de etiqueta libre. Se evaluaron dos sistemas de leber libres: un genosensor de ADN impedimétrico que utiliza una monocapa de biotina autoensamblada (SAM) y un genosensor de ADN voltamétrico mediante la modificación de un nuevo transductor de grafito epoxi con óxido de grafeno. Los resultados obtenidos en este estudio mostraron que la sonda de oligonucleótido de 19 bases biotinilada del gen gag H1Gag1584 puede utilizarse como elemento de reconocimiento molecular para la detección de ADN provírico del VIH-1, en dos sistemas de detección electroquímica de marcadores libres.

Citas

1. Paniel, N., et al., “Selection of DNA aptamers against penicillin G using Capture-SELEX for the development of an impedimetric sensor”. Talanta. 2017, 162, 232-240. ISSN: 0039-9140.
2. Paleček, E. “NUCLEIC ACIDS | Electrochemical Methods”. In Enyclopedia of Analytical Science. 2th Edition. P.W.T. Poole, Editor: Elsevier: Oxford, 2005, pp. 399-408. ISBN: 978-0-12-369397-6.
3. Erdem, A., et al., “Rigid carbon composites: a new transducing material for label-free electrochemical genosensing”. Journal of Electroanalytical Chemistry. 2004, 567(1), 29-37. ISSN: 1572-6657.
4. Zacco, E., M.I. Pividori, and S. Alegret. “Electrochemical biosensing based on universal affinity biocomposite platforms”. Biosensors and Bioelectronics. 2006, 21(7), 1291-1301. ISSN: 0956-5663.
5. Castañeda, M.T., S. Alegret, and A. Merkoçi. “Chapter 38 Gold nanoparticles in DNA and protein analysis”. In Comprehensive Analytical Chemistry, S. Alegret and A. Merkoçi, Editors. 2007, Elsevier. pp. 941-958. ISBN: 0166-526X.
6. Ozsoz, M., ed. Electrochemical DNA biosensors. 2012, CRC Press. 400. ISBN 13: 978-9-81430-398-9.
7. Hashemi, P., et al., “Fabrication of a novel impedimetric sensor based on l-Cysteine/Cu(II) modified gold electrode for sensitive determination of ampyra”. Analytica Chimica Acta. 2017. ISSN 0003-2670.
8. Williams, E., et al., “Rapid electrochemical genosensor assay using a streptavidin carbon-polymer biocomposite electrode”. Biosensors and Bioelectronics. 2003, 19(3), 165-175. ISSN 0956-5663.
9. Hernández-Santos, D., M.B. González-García, and A. Costa-García. “Procedure 37 Genosensor on streptavidin-modified thick-film carbon electrodes for TNFRSF21 PCR products”. In Comprehensive Analytical Chemistry, S. Alegret and A. Merkoçi, Editors. 2007, Elsevier. p. e257-e264. ISBN 0166-526X.
10. Blanco, M., et al., “HIV-1 genetic variability in Cuba and implications for transmission and clinical progression”. MEDICC review. 2015, 17, 25-31. ISSN 1555-7960.
11. Cham, F., et al., “Development of a One-Tube Multiplex Reverse Transcriptase-Polymerase Chain Reaction Assay for the Simultaneous Amplification of HIV Type 1 Group M gag and env Heteroduplex Mobility Assay Fragments”. AIDS Research and Human Retroviruses. 2000, 16(15),1503-1505. ISSN 0889-2229.
12. Heyndrickx, L., et al., “Simplified Strategy for Detection of Recombinant Human Immunodeficiency Virus Type 1 Group M Isolates bygag/env Heteroduplex Mobility Assay”. Journal of virology. 2000,74(1), 363-370. ISSN 0022-538X.
13. Balbin Tamayo, A.I., et al., “Biotin self-assembled monolayer for impedimetric genosensor for direct detection of HIV-1”. MICROCHEMICAL JOURNAL. 2020, 153. ISSN 0026-265X.
14. Balbin-Tamayo, A.I., et al., “Comportamiento electroquímico de un novedoso electrodo grafito-epóxido modificado para inmovilización covalente de ADN”. Revista Cubana de Química. 2017, 29(1), 115-132. ISSN 2224-5421.
15. Ferreira, A.A.P., et al., “Optimization of incubation time of protein Tc85 in the construction of biosensor: Is the EIS a good tool?”. Journal of Electroanalytical Chemistry. 2010, 643(1-2), 1-8. ISSN 1572-6657.
16. Walsh, M.K., X. Wang, and B.C. Weimer. “Optimizing the immobilization of single-stranded DNA onto glass beads”. Journal of Biochemical and Biophysical Methods. 2001, 47(3), 221-231. ISSN 0165-022X.
17. Ocaña, C. and M.d. Valle. “A comparison of four protocols for the immobilization of an aptamer on graphite composite electrodes”. Microchim Acta. 2014, (181), 355-363. ISSN: 1436-5073.
18. Pividori, M.I., et al., “Procedure 30 Electrochemical determination of Salmonella spp. based on GEC electrodes”. In Comprehensive Analytical Chemistry, S. Alegret and A. Merkoçi, Editors. 2007, Elsevier. p. e213-e219. ISBN 0166-526X.
19. Roche Molecular Systems, I. COBAS® AmpliPrep/COBAS® TaqMan®HIV-1 Qualitative Test, version 2.0. 2015; Available from: http://www.roche-diagnostics.us/patents/.
20. Chalaya, T., et al., “Improving specificity of DNA hybridization-based methods”. Nucleic acids research. 2004, 32(16), e130-e130. 1362-4962 0305-1048. ISSN 1362-4962.
21. Stefani, M.M.A., et al., “Molecular screening shows extensive HIV-1 genetic diversity in Central West Brazil”. Journal of Clinical Virology. 2007, 39(3), 205-209. ISSN 1386-6532.
22. Balbin Tamayo A I, et al., “Free-label electrochemical detection of of HIV-1 proviral DNA in clinical sample”. International Journal of Biosensors & Bioelectronics. 2018, 4(5), 217-219. ISSN: 2573-2838.
23. Li, S., et al., “A high-performance DNA biosensor based on the assembly of gold nanoparticles on the terminal of hairpin-structured probe DNA”. Sensors and Actuators B: Chemical. 2016, 223, 861-867. ISSN 0925-4005.
24. Uliana, C.V., G.S. Garbellini, and H. Yamanaka. “Evaluation of the interactions of DNA with the textile dyes Disperse Orange 1 and Disperse Red 1 and their electrolysis products using an electrochemical biosensor”. Sensors and Actuators B: Chemical. 2013, 178(Supplement C), 627-635. ISSN 0925-4005.
25. Wang, J., A.-N. Kawde, and M. Musameh. “Carbon-nanotube-modified glassy carbon electrodes for amplified label-free electrochemical detection of DNA hybridization”. Analyst. 2003, 128(7), 912-916. ISSN 0003-2654.
26. Pividori, M.I., A. Merkoçi, and S. Alegret. “Electrochemical genosensor design: immobilisation of oligonucleotides onto transducer surfaces and detection methods”. Biosensors and Bioelectronics. 2000, 15(5), 291-303. ISSN 0956-5663.
27. Delwart, E.L., et al., “Genetic Subtyping of Human Immunodeficiency Virus Using a Heteroduplex Mobility Assay”. Cold Spring Harbor Laboratory. 1995, (4), 202-216. ISSN 1054-9805.
28. Erdem, A., “Chapter 19 Genosensor technology for electrochemical sensing of nucleic acids by using different transducers”. In Comprehensive Analytical Chemistry, S. Alegret and A. Merkoçi, Editors. 2007, Elsevier. p. 403-411. ISBN 0166-526X.
29. Paleček, E. and F. Jelen. “Electrochemistry of Nucleic Acids, in Perspectives in Bioanalysis”, F.S. Emil Paleček and J. Wang, Editors. 2005, Elsevier. p. 73-173. ISBN1871-0069.

Descargas

Publicado

2021-10-26

Cómo citar

Balbin-Tamayo, A. I., López-Rizo, L. S., Yamanaka, H., Mardini-Farias, P. A., & Esteva-Guas, A. M. (2021). La utilidad del oligonucleótido biotinilado del gen gag h1gag1584 para la detección electroquímica sin mediador del ADN proviral del VIH-1. Revista Cubana De Química, 33(3), 367–382. Recuperado a partir de https://cubanaquimica.uo.edu.cu/index.php/cq/article/view/5191

Número

Sección

Artículos