Molecular docking of the interaction of 4,5- phenyl and 4,5- furyl imidazoles with T. Cruci, T. Brucei and L. Infantum Cyp51 enzymes

Authors

  • Mariana Castro-Piñol Facultad de Ciencias Naturales y Exactas, Universidad de Oriente, Santiago de Cuba, Cuba
  • América García-López Facultad de Ciencias Naturales y Exactas, Universidad de Oriente, Santiago de Cuba, Cuba
  • Julio Rojas Vargas Facultad de Ciencias Naturales y Exactas, Universidad de Oriente, Santiago de Cuba, Cuba
  • Jorge Acevedo Martínez Facultad de Ciencias Naturales y Exactas, Universidad de Oriente, Santiago de Cuba, Cuba

Keywords:

imidazole; molecular docking; Trypanosoma cruzi; Trypanosoma brucei; Leishmania infantum; CYP51.

Abstract

The subspecies Leishmania spp., Trypanosoma cruzi and Trypanosoma brucei are the causative agents of leishmaniasis, American trypanosomiasis and human African trypanosomiasis respectively. These diseases are not prioritized on the bigger pharmaceutical companies, since they usually affect the poorest countries and the drugs that are available for their treatment are inefficient, old and toxic. In order to find pharmacological alternatives, the following investigation is carried out, which explores in silico study through molecular docking, the difference of using phenyl or furyl groups in positions 4 and 5 of imidazoles as potential antiprotozoa against Leishmania spp. , Trypanosoma cruzi and Trypanosoma brucei. It seems to be a general rule that phenyl groups achieve a greater decrease in free binding energy, which indicates a greater affinity for the proteins studied, however there are exceptions due to geometric particularities of the active sites and the structures of the imidazoles.

References

R. VARGAS, J. A. et al. "In vitro evaluation of arylsubstituted imidazoles derivatives as antiprotozoal agents and docking studies on sterol 14α-demethylase (CYP51) from Trypanosoma cruzi, Leishmania infantum, and Trypanosoma brucei". Parasitology research, 2019, 118 (5), 1533-1548. DOI: 10.1007/s00436-019-06206-z.

ALCÂNTARA, L. M.; FERREIRA, T. C. S.; GADELHA, F. R.; MIGUEL, D. C. "Challenges in drug discovery targeting TriTryp diseases with an emphasis on leishmaniasis". International Journal for Parasitology: Drugs and Drug Resistance, 2018, 8 (3), 430-439. DOI: 10.1016/j.ijpddr.2018.09.006.

ARONSON, N. E.; JOYA, C. A. "Cutaneous leishmaniasis: updates in diagnosis and management". Infectious Disease Clinics, 2019, 33 (1), 101-117. DOI: https://doi.org/10.1016/j.idc.2018.10.004.

VAN GRIENSVEN, J.; DIRO, E. "Visceral leishmaniasis". Infectious Disease Clinics, 2012, 26 (2), 309-322. DOI:https://doi.org/10.1016/j.idc.2012.03.005.

HAILU, A.; DAGNE, D. A.; BOELAERT, M. Leishmaniasis. En GYAPONG, J.; BOATIN, B. Neglected Tropical Diseases-Sub-Saharan Africa. Springer, 2016, p. 87-112. ISBN: 978-3-319-25471-5. DOI: 10.1007/978-3-319-25471-5_5.

BOELAERT, M.; MEHEUS, F.; SANCHEZ, A.; SINGH, S., et al. "The poorest of the poor: a poverty appraisal of households affected by visceral leishmaniasis in Bihar, India". Tropical medicine & international health, 2009, 14 (6), 639-644. DOI: 10.1111/j.1365-3156.2009.02279.x.

ALEMAYEHU, B.; ALEMAYEHU, M. "Leishmaniasis: a review on parasite, vector and reservoir host". Health Science Journal, 2017, 11 (4), 1. DOI: 10.21767/1791-809X.1000519.

TORRES-GUERRERO, E.; QUINTANILLA-CEDILLO, M. R.; RUIZ-ESMENJAUD, J.; ARENAS, R. "Leishmaniasis: a review". F1000Research, 2017, 6. DOI: 10.12688/f1000research.11120.1.

PONTE-SUCRE, A.; GAMARRO, F.; DUJARDIN, J.-C.; BARRETT, M. P., et al. "Drug resistance and treatment failure in leishmaniasis: A 21st century challenge". PLoS neglected tropical diseases, 2017, 11 (12), e0006052. DOI: 10.1371/journal.pntd.0006052.

M. ROATT, B. et al. "Recent advances and new strategies on leishmaniasis treatment". Applied Microbiology and Biotechnology, 2020, 1-13. DOI: 10.1007/s00253-020-10856-w.

BERN, C.; KJOS, S.; YABSLEY, M. J.; MONTGOMERY, S. P. "Trypanosoma cruzi and Chagas' disease in the United States". Clinical microbiology reviews, 2011, 24 (4), 655-681. DOI: 10.1128/CMR.00005-11.

RUEDA, K.; TRUJILLO, J. E.; CARRANZA, J. C.; VALLEJO, G. A. "Transmisión oral de Trypanosoma cruzi: una nueva situación epidemiológica de la enfermedad de Chagas en Colombia y otros países suramericanos". Biomédica, 2014, 34 (4), 631-641. DOI: https://doi.org/10.7705/biomedica.v34i4.2204.

RIBEIRO, V. et al. "Current trends in the pharmacological management of Chagas disease". International Journal for Parasitology: Drugs and Drug Resistance, 2020, 12, 7-17. https://doi.org/10.1016/J.IJPDDR.2019.11.004.

CARDOSO, M. F.; FOREZI, L. S.; DE SOUZA, A. S.; FARIA, A. F., et al. "Tandem Synthesis of Furanaphthoquinones via Enamines and Evaluation of Their Antiparasitic Effects against Trypanosoma cruzi". J. Braz. Chem. Soc., 2021, 00 (00). Forthcomming Paper. https://www.arca.fiocruz.br/handle/icict/50309.

POLLASTRI, M. P. "Fexinidazole: a new drug for African sleeping sickness on the horizon". Trends in parasitology, 2018, 34 (3), 178-179. DOI: 10.1016/j.pt.2017.12.002.

HULPIA, F. et al. "Combining tubercidin and cordycepin scaffolds results in highly active candidates to treat late-stage sleeping sickness". Nature communications, 2019, 10 (1), 1-11. https://doi.org/10.1038/s41467-019-13522-6.

MESU, V. K. B. K. et al. "Oral fexinidazole for late-stage African Trypanosoma brucei gambiense trypanosomiasis: a pivotal multicentre, randomised, non-inferiority trial". The Lancet, 2018, 391 (10116), 144-154. DOI: 10.1016/S0140-6736(17)32758-7.

REIGADA, C. et al. "Repurposing of terconazole as an anti Trypanosoma cruzi agent". Heliyon, 2019, 5 (6), e01947. DOI: 10.1016/j.heliyon.2019.e01947.

DE KONING, H. P. "The drugs of sleeping sickness: their mechanisms of action and resistance, and a brief history". Tropical Medicine and Infectious Disease, 2020, 5 (1), 14. DOI: 10.3390/tropicalmed5010014.

HAN, G. et al. "Discovery of novel fungal lanosterol 14α-demethylase (CYP51)/histone deacetylase dual inhibitors to treat azole-resistant candidiasis". Journal of medicinal chemistry, 2020, 63 (10), 5341-5359. DOI: 10.1021/acs.jmedchem.0c00102.

SONG, J.; ZHANG, S.; LU, L. "Fungal cytochrome P450 protein Cyp51: What we can learn from its evolution, regulons and Cyp51-based azole resistance". Fungal Biology Reviews, 2018, 32 (3), 131-142. https://doi.org/10.1016/j.fbr.2018.05.001.

DE ALMEIDA FIUZA, L. F. et al. "Identification of Pyrazolo [3, 4-e][1, 4] thiazepin based CYP51 inhibitors as potential Chagas disease therapeutic alternative: In vitro and in vivo evaluation, binding mode prediction and SAR exploration". European journal of medicinal chemistry, 2018, 149, 257-268. DOI: 10.1016/j.ejmech.2018.02.020.

DE OLIVEIRA, P. I. C. et al. "Planning new Trypanosoma cruzi CYP51 inhibitors using QSAR studies". Molecular Diversity, 2020, 1-17. DOI: 10.1007/s11030-020-10113-2.

SHAH, S. M. et al. "β-Sitosterol from Ifloga spicata (Forssk.) Sch. Bip. as potential anti-leishmanial agent against leishmania tropica: docking and molecular insights". Steroids, 2019, 148, 56-62. DOI: 10.1016/j.steroids.2019.05.001.

PALMA, L. C. et al. "A docking-based structural analysis of geldanamycin-derived inhibitor binding to human or Leishmania Hsp90". Scientific reports, 2019, 9 (1), 1-9. DOI:10.1038/s41598-019-51239-0.

MERCADO-CAMARGO, J. et al. "Homology modeling of leishmanolysin (gp63) from Leishmania panamensis and molecular docking of flavonoids". ACS omega, 2020, 5 (24), 14741-14749. https://doi.org/10.1021/acsomega.0c01584.

BHOWMIK, D. et al. "Evaluation of potential drugs against leishmaniasis targeting catalytic subunit of Leishmania donovani nuclear DNA primase using ligand based virtual screening, docking and molecular dynamics approaches". Journal of Biomolecular Structure and Dynamics, 2021, 39 (5), 1838-1852. DOI: 10.1080/07391102.2020.1739557.

SHI, N.; ZHENG, Q.; ZHANG, H. "Molecular dynamics investigations of binding mechanism for triazoles inhibitors to CYP51". Frontiers in molecular biosciences, 2020, 7, 266. https://doi.org/10.3389/fmolb.2020.586540.

R. VARGAS, J. A.; LOPEZ, A. G.; PIÑOL, M. C.; FROEYEN, M. "Molecular docking study on the interaction between 2-substituted-4, 5-difuryl Imidazoles with different Protein Target for antileishmanial activity". Journal of Applied Pharmaceutical Science, 2018, 8 (03), 014-022. DOI:10.7324/JAPS.2018.8303.

ROJAS VARGAS, J. A.; LÓPEZ, A. G.; FROEYEN, M. "Molecular Docking Studies of 1, 2, 4, 5-tetrasubstituted Imidazoles with Different Protein Targets of Mycobacterium tuberculosis". Biomirror, 2016, 7. https://www.researchgate.net/publication/308564671.

VARGAS, J. A. R.; LÓPEZ, A. G.; RODRÍGUEZ, L. A.; FROEYEN, M. "Molecular Docking Studies of Arylsubstituted Imidazoles on Oncogenic Protein Bcr-Abl Tyrosine kinase". Journal of PharmaSciTech, 2018, 8 (2). https://www.researchgate.net/publication/331983186.

ROJAS VARGAS, J. A. et al. ". In vitro Evaluation and Molecular Docking Studies of Aryl-Substituted Imidazoles against Leishmania amazonensis". Int. J. Trop. Dis., 2021, 4 (2). 10.23937/2643-461x/1710050.

EVANS, D. A. "History of the Harvard ChemDraw project". Angewandte Chemie International Edition, 2014, 53 (42), 11140-11145. https://doi.org/10.1002/anie.201405820.

PETTERSEN, E. F.; GODDARD, T. D.; HUANG, C. C.; COUCH, G. S., et al. "UCSF Chimera—a visualization system for exploratory research and analysis". Journal of computational chemistry, 2004, 25 (13), 1605-1612. DOI: 10.1002/jcc.20084.

GASTEIGER, J.; MARSILI, M. "Iterative partial equalization of orbital electronegativity—a rapid access to atomic charges". Tetrahedron, 1980, 36 (22), 3219-3228. https://doi.org/10.1016/0040-4020(80)80168-2.

WALLACE, A. C.; LASKOWSKI, R. A.; THORNTON, J. M. "LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions". Protein engineering, design and selection, 1995, 8 (2), 127-134.DOI: 10.1093/protein/8.2.127.

LEPESHEVA, G. I. et al. "Structural insights into inhibition of sterol 14α-demethylase in the human pathogen Trypanosoma cruzi". Journal of Biological Chemistry, 2010, 285 (33), 25582-25590.DOI: 10.1074/jbc.M110.133215.

CHOI, J. Y. et al. "Rational development of 4-aminopyridyl-based inhibitors targeting Trypanosoma cruzi CYP51 as anti-Chagas agents". Journal of medicinal chemistry, 2013, 56 (19), 7651-7668. DOI: 10.1021/jm401067s.

HARGROVE, T. Y. et al. "Substrate preferences and catalytic parameters determined by structural characteristics of sterol 14α-demethylase (CYP51) from Leishmania infantum". Journal of Biological Chemistry, 2011, 286 (30), 26838-26848. DOI: https://doi.org/10.1074/jbc.M111.237099.

Published

2022-01-03

How to Cite

Castro-Piñol, M. ., García-López, A. ., Rojas Vargas, J. ., & Acevedo Martínez, J. . (2022). Molecular docking of the interaction of 4,5- phenyl and 4,5- furyl imidazoles with T. Cruci, T. Brucei and L. Infantum Cyp51 enzymes. Revista Cubana De Química, 34(1), 159–179. Retrieved from https://cubanaquimica.uo.edu.cu/index.php/cq/article/view/5213

Issue

Section

Artículos