The theoretical selectivity of N,N'-((1,3-phenylenebis(azanediyl))bis(carbonothioyl))bis(furan-2carboxamide) as an ionophore of selective electrode an ions Lead (II)


  • Yonatan Mederos-Núñez Facultad de Ciencias Naturales y Exactas, Universidad de Oriente, Santiago de Cuba, Cuba
  • América García-López Facultad de Ciencias Naturales y Exactas, Universidad de Oriente, Santiago de Cuba, Cuba
  • María de los Ángeles Arada-Pérez Facultad de Ciencias Naturales y Exactas, Universidad de Oriente, Santiago de Cuba, Cuba


DFT; M06L; ESI; Selectivity.


The present work calculates the likeness of the N, N’-((1, 3-fenilenbis theoretically (azanediil)) bis(carbonotioil)) bis(furan-2-carboxamida) as ionóforo of a selective electrode to ions lead (II). For it was calculated it the energy of union ionóforo-Pb2+, the same as for the main reported interferences: Cu2+, Hg2+, Zn2+, Ni2+, Co2+, Ca2+ and Cd2+. The geometries and energy were optimized using the Theory of the Functional one of the Density with the functional M06L and three combinations of different base groups. For the calculation of the solvation energy the pattern SMD was used. The relative energy obtained by the first two combinations of base groups differs with the experimental results. However, the third combination ratifies the experimental evidence of the preference of this ionóforo toward the ions Cu2+ and Pb2+ and the smallest selectivity toward the rest of the interferences, except for the ions Ni2+ whose relative energy are bigger than those of any other ion.


1. BAKKER, E. Electrochemical Sensors. Anal. Chem, 2004, 76, 3285-3298. ISSN: 1520-6882
2. BAKKER, E., QIN Y. Electrochemical sensors. Analytical Chemistry, 2006, 78(12), 3965– 3984. ISSN: 1520-6882 3. BAKKER, E., TELTING-DIAZ, M. Electrochemical sensors. Analytical Chemistry, 2002, 74(12), 2781-2800. ISSN: 1520-6882
4. BOBACKA, J., IVASKA, A., LEWENSTAM, A. Potentiometric ion sensors. Chemical Reviews, 2008, 108(2), 329-351. ISSN: 1520-6890
5. DIMESKI, G. Interference testing. The Clinical Biochemist Reviews, 2008, 29, S43. ISSN: 01598090
6. BAKKER, E., PRETSCH, E. y BÜHLMANN, P. Selectivity of potentiometric ion sensors. Analytical Chemistry, 2000, 72(6), 1127-1133. ISSN: 1520-6882
7. GUILBAULT, G., DURST, R., FRANT, M., FREISER, H., et al. Recommendations for nomenclature of ion-selective electrodes. Pure Appl. Chem, 1976, 48(1), 127-132. ISSN: 13653075
8. BUCK, R. P., LINDNER, E. Recommendations for nomenclature of ionselective electrodes (IUPAC Recommendations 1994). Pure and Applied Chemistry, 1994, 66(12), 2527-2536. ISSN: 1365-3075
9. PEARSON, R. G. Hard and soft acids and bases. Journal of the American Chemical Society, 1963, 85(22), 3533-3539. ISSN: 1520-5126
10. PEARSON, R. G., SONGSTAD, J. Application of the principle of hard and soft acids and bases to organic chemistry. Journal of the American Chemical Society, 1967, 89(8), 1827-1836. ISSN: 1520-5126
11. MARTIN, R. B. A stability ruler for metal ion complexes. Journal of Chemical Education, 1987, 64(5), 402. ISSN: 0021-9584
12. SIGEL, H., MCCORMICK, D. B. Discriminating behavior of metal ions and ligands with regard to their biological significance. Accounts of Chemical Research, 1970, 3(6), 201-208.
13. GLUSKER, J. P. Structural aspects of metal liganding to functional groups in proteins. In Advances in protein chemistry. Elsevier, 1991, 42, 1-76. ISSN: 1520-4898
14. RULı́ŠEK, L. R., VONDRÁŠEK, J. Coordination geometries of selected transition metal ions (Co2+, Ni2+, Cu2+, Zn2+, Cd2+, and Hg2+) in metalloproteins. Journal of inorganic biochemistry, 1998, 71(3-4), 115-127. ISSN: 1873-3344
15. RIAHI, S., MOUSAVI, M. Y SHAMSIPUR, M. Prediction of selectivity coefficients of a theophylline-selective electrode using MLR and ANN. Talanta, 2006, 69(3), 736-740. ISSN: 1873-3573
16. 16.XING, W.-L., HE, X.-W. Prediction of the selectivity coefficients of a berberine selective electrode using artificial neural networks. Analytica chimica acta, 1997, 349(1-3), 283-286. ISSN: 1873-4324
17. FATEMI, M. H., GHARAGHANI, S., MOHAMMADKHANI, S., REZAIE, Z. Prediction of selectivity coefficients of univalent anions for anion-selective electrode using support vector machine. Electrochimica acta, 2008, 53(12), 4276-4282. ISSN: 0013-4686
18. .RIAHI, S., GANJALI, M. R., NOROUZI, P., JAFARI, F., Application of GA-MLR, GAPLS and the DFT quantum mechanical (QM) calculations for the prediction of the selectivity coefficients of a histamine-selective electrode. Sensors and Actuators B: Chemical, 2008, 132(1), 13-19. ISSN: 0925-4005
19. MIKHELSON, K. N., BOBACKA, J., IVASKA, A., LEWENSTAM, A., et al. Selectivity of Lithium Electrodes: Correlation with Ion− Ionophore Complex Stability Constants and with Interfacial Exchange Current Densities. Analytical Chemistry, 2002, 74(3), 518-527. ISSN: 1520-6882
20. LEWENSTAM, A., HULANICKI, A. Selectivity coefficients of ion-sensing electrodes. Selective Electrode Rev., 1990, 12, 161. ISSN: 0894-3923
21. ARADA PÉREZ, M., LANDAZURY YANES, S., CARDONA, M., AGUILERA, L., et al. CopperII-selective electrodes based on 1-furoyl-3, 3-diethylthiourea as a neutral carrier. Journal of the Chilean Chemical Society, 2010, 55(3), 371-373. ISSN: 0717-9707
22. LAZO, A., ARADA PÉREZ, M., BUSTAMANTE, M., OTÁZO, E., et al. Construcción de un ESI a plomo, a partir de la 1-furoil-3, 3-dietil tiourea como ionóforo. Revista Cubana de Química, 2003, 15(2), 60-67. ISSN: 2224-5421
23. LAZO, A., ARADA PÉREZ, M., BUSTAMANTE, M., JIMENEZ, J., et al. Construction and characterization of a lead (II) ion selective electrode with 1-furoil-3, 3-diethylthiourea as neutral carrier, Santiago, Chile: Universidad de Chile, 2005-11 [Fecha consulta: 20 de septiembre 2020]. Disponible en ISSN: 0001-9704
24. LAZO, A., ARADA PÉREZ, M., BUSTAMANTE, M., JIMENEZ, J., et al. Preparation and study of a 1-furoyl-3, 3-diethylthiourea electrode. Journal of the Chilean Chemical Society, 2006, 51(3), 975-978. ISSN: 0717-9707
25. LAZO-FRAGA, A. R., VASCONCELOS-PACHECO, A., DÍAZ-GARCÍA, A., BUSTAMANTE-SÁNCHEZ, M., et al. Evaluación de diferentes aroiltioureas como ionóforos en sensores de plomo (II). Revista Cubana de Química, 2015, 27(3), 262-274. ISSN: 2224-5421
26. WILSON, D., ARADA PÉREZ, M., ALEGRET, S., DEL VALLE, M., Lead (II) ion selective electrodes with PVC membranes based on two bis-thioureas as ionophores: 1, 3-bis (N′benzoylthioureido) benzene and 1, 3-bis (N′-furoylthioureido) benzene. Journal of hazardous materials, 2010, 181(1-3), 140-146. ISSN: 0304-3894
27. DAVIDOVICH, R. L., STAVILA, V., MARININ, D. V., VOIT, E. I., et al. Stereochemistry of lead (II) complexes with oxygen donor ligands. Coordination Chemistry Reviews, 2009, 253(9-10), 1316-1352. ISSN: 0010-8545
28. SHIMONI-LIVNY, L., GLUSKER, J. P., BOCK, C. W., Lone pair functionality in divalent lead compounds. Inorganic Chemistry, 1998, 37(8), 1853-1867. ISSN: 0020-1669
29. THIRUMURUGAN, A., RAO, C., Hybrid structures formed by homo-and heteroleptic aliphatic dicarboxylates of lead with 2-D inorganic connectivity. Journal of Solid State Chemistry, 2008, 181(5), 1184-1194. ISSN: 0022-4596
30. HARRISON, P. G., STEEL, A. T., Lead (II) carboxylate structures. Journal of Organometallic Chemistry, 1982, 239(1), 105-113. ISSN: 0022-328X
31. HU, J., STEIN, A., BÜHLMANN, P. Rational design of all-solid-state ion-selective electrodes and reference electrodes. TrAC Trends in Analytical Chemistry, 2016, 76, 102-114. ISSN: 0165-9936
32. CATALANO, J., MURPHY, A., YAO, Y., YAP, G. P., et al. Coordination geometry of lead carboxylates–spectroscopic and crystallographic evidence. Dalton Transactions, 2015, 44(5), 2340-2347. ISSN: 1477-9234
33. KAKKAR, R., GROVER, R., GAHLOT, P. Metal ion selectivity of hydroxamates: a density functional study. Journal of Molecular Structure: THEOCHEM, 2006, 767(1-3), ISSN: 175-184. ISSN: 2210-271X
34. BARCA, G. M., BERTONI, C., CARRINGTON, L., DATTA, D., et al. Recent developments in the general atomic and molecular electronic structure system. The Journal of chemical physics, 2020, 152(15), 154102. ISSN: 1089-7690
35. .ZHAO, Y., TRUHLAR, D. G. A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. The Journal of chemical physics, 2006, 125(19), 194101. ISSN: 1089-7690
36. MARENICH, A. V., CRAMER, C. J., TRUHLAR D. G., Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. The Journal of Physical Chemistry B, 2009, 113(18), 63786396. ISSN: 1520-5207
37. HASSOUNA, M. E. M.; ELSUCCARY, S. A. A.; GRAHAM, J. P. N, N′-Bis (3-methyl-1phenyl-4-benzylidine-5-pyrazolone) propylenediamine Schiff base as a neutral carrier for silver (I) ion-selective electrodes. Sensors and Actuators B: Chemical, 2010, 146(1), 79-90. ISSN: 0925-4005
38. DEMIR, S., et al. An efficient ab initio DFT and PCM assessment of the potentiometric selectivity of a salophen type Schiff base. Journal of molecular modeling, 2014, 20(6), 1-7. ISSN: 0948-5023



How to Cite

Mederos-Núñez, Y., García-López, A., & Arada-Pérez, M. de los Ángeles. (2021). The theoretical selectivity of N,N’-((1,3-phenylenebis(azanediyl))bis(carbonothioyl))bis(furan-2carboxamide) as an ionophore of selective electrode an ions Lead (II). Revista Cubana De Química, 33(2), 136–156. Retrieved from

Most read articles by the same author(s)