Release study of 5-fluorouracil from poly (butylcyanoacrylate) nanoparticles


  • Denisse Ferrer-Viñals Instituto de Ciencia y Tecnología de Materiales, Universidad de La Habana, Cuba
  • Rubén Álvarez-Brito Facultad de Química, Universidad de La Habana, Cuba
  • Alen Nils Baeza-Fonte Instituto de Ciencia y Tecnología de Materiales, Universidad de La Habana, Cuba


5-fluorouracil; controlled release; nanoparticles; poly (butylcyanoacrylate).


5-Fluorouracil (5-FU) is a cytostatic commonly used in cancer treatment. Today, it seeks to enhance its pharmacological use trying to reduce adverse effects. This research studies the release of 5-FU from an adsorbed and encapsulated poly (butylcyanoacrylate) nanoparticles system for its subsequent use as a controlled release system. The encapsulated particles were obtained by the emulsion polymerization method, in the presence of 5-FU in the medium, while those adsorbed were obtained by contact of the polymeric particles with the 5-FU in solution. The adsorption process could be adequately described by the Langmuir. Preliminary release experiments showed that a zero-order kinetic model is fulfilled for both processes, where the released percentage of encapsulated 5-FU is greater (61,4 %) than that of adsorbed (7,7 %).


. SULTANA, N.; BORA, P.; SARMA, B. “Nanocarriers in drug delivery system: Eminence and confront”. En: NGUYEN-TRI, P.; DO, T.; NGUYEN, T. A. (Eds.). Smart Nanocontainers. Elsevier: online, 2020, pp. 159-178. ISBN: 9780128167700.

. ORTIZ, R. et al. “Poly (butylcyanoacrylate) and poly (ε-caprolactone) nanoparticles loaded with 5-fluorouracil increase the cytotoxic effect of the drug in experimental colon cancer”. The AAPS journal. 2015, 17, 918-929. ISSN: 1550-7416.

. KUMARI, A.; YADAV, S. K.; YADAV, S. C. “Biodegradable polymeric nanoparticles based drug delivery systems”. Colloids and Surfaces B: Biointerfaces. 2010, 75, 1-18. ISSN: 0927-7765.

XIAO, D.; ZHOU, R. “Application of Nano Drug Delivery Systems in Inhibition of Tumors and Cancer Stem Cells”. En: Z. R. Lin Y. (Eds.). Advances in Nanomaterials-based Cell Biology Research. Springer: Singapore, 2021 pp. 111-136. ISBN: 978-981-16-2666-1.

GUTERRES, S. S.; ALVES, M. P.; POHLMANN, A. R. “Polymeric nanoparticles, nanospheres and nanocapsules, for cutaneous applications”. Drug Target Insights. 2007, 2, 147-157. ISSN: 1177-3928.

SARANYA, S.; RADHA K.V. “Review of nanobiopolymers for controlled drug delivery”, Polymer-Plastics Technology and Engineering.2014, 53, 1636-1646. ISSN: 2574-0881.

CHENG, H. et al. “Design of self-polymerized insulin loaded poly(n-butylcyanoacrylate) nanoparticles for tunable oral delivery”. Journal of Controlled Release. 2020, 321, 641-653. ISSN: 0168-3659.

VRIGNAUD, S.; BENOIT, J. P.; SAULNIER, P. “Strategies for the nanoencapsulation of hydrophilic molecules in polymer-based nanoparticles”. Biomaterials. 2011, 32, 8593-8604. ISSN: 0142-9612.

GRAF, A.; McDOWELL, A.; RADES, T. “Poly (alkycyanoacrylate) nanoparticles for enhanced delivery of therapeutics–is there real potential?”. Expert Opinion on Drug Delivery. 2009, 6, 371-387. ISSN: 1742-5247.

VAUTHIER, C. et al. “Poly (alkylcyanoacrylates) as biodegradable materials for biomedical applications”. Advanced Drug Delivery Reviews. 2003, 55, 519-548. ISSN: 1872-8294.

GAO, S. et al. “Polybutylcyanoacrylate nanocarriers as promising targeted drug delivery systems”. Journal of Drug Targeting. 2015, 23, 481-496. ISSN:1029-2330.

ATKINS, P.; De Paula, J. Processes at solid surfaces. En: ATKINS, P.; De Paula, J. (Eds.). Atkins' Physical Chemistry. Oxford University Press: Great Britain, 2006 pp. 917-922. ISBN: 071677111X.

ARIAS, J. L. et al. “Study of carbonyliron/poly (butylcyanoacrylate)(core/shell) particles as anticancer drug delivery systems: Loading and release properties”. European Journal of Pharmaceutical Sciences. 2008, 33, 252-261. ISSN: 09280987.

ARIAS, J. L. et al. “Magnetite/poly (alkylcyanoacrylate)(core/shell) nanoparticles as 5-Fluorouracil delivery systems for active targeting”. European Journal of Pharmaceutics and Biopharmaceutics. 2008, 69, 54-63. ISSN: 1873-3441.

RIVAS, C. F. et al. “Isoterma de Langmuir y Freundlich como modelos para la adsorción de componentes de ácido nucleico sobre WO3”. Saber. 2014, 26, 43-49. ISSN: 2343-6458.

ISHIZAWA, C.; NAKAMATSU, J. “Matrices Poliméricas para Liberación Controlada de Sustancias Activas”. Revista de Química. 2002, 16, 13-23. ISSN: 2518-2803

BOOSTANI, S.; JAFARI, S. M. “A comprehensive review on thecontrolled release of encapsulated food ingredients; fundamental concepts to design and applications”. Trends in Food Science and Technology. 2021, 109, 303-321. ISSN: 9942-244.

SÁEZ, V.; HERNÁEZ, E.; LÓPEZ, L. “Liberación controlada de fármacos. Aplicaciones biomédicas”, Revista Iberoamericana de Polímeros. 2003, 4, 111-122. ISSN: 1988-4206.

DASH, S. et al. “Kinetic modeling on drug release from controlled drug delivery systems”. Acta Poloniae Pharmaceutica-Drug Research. 2010, 67, 217-223. ISSN: 2353-5288.

SHAH, J.; DESPHANDE, A. “Kinetic modeling and comparison of in vitro dissolution profiles”. World Journal of Pharmaceutical Sciences. 2014, 2, 259-421. ISSN: 2321-3086.

MANSOORI, B. et al. “Hyaluronic acid-decorated liposomal nanoparticles for targeted delivery of 5-fluorouracil into HT-29 colorectal cancer cells”. Journal of Cellular Physiology. 2020, 235(10): 6817–6830. ISSN: 1097-4652.

PETRILLI, R. et al. “Skin cancer treatment effectiveness is improved by iontophoresis of EGFR-targeted liposomes containing 5-FU compared with subcutaneous injection”. Journal of Controlled Release. 2018, 283, 151-162 ISSN: 1873-4995.

KHALLAF, R. A. et al. “5- Fluorouracil shell-enriched solid lipid nanoparticles (SLN) for effective skin carcinoma treatment skin carcinoma treatment”. Drug Delivery. 2016, 23(9), 3452-3460. ISSN: 1567 2018.

LE, V. M. et al. “An investigation of antitumor efficiency of novel sustained and targeted 5-fluorouracil nanoparticles”. European journal of medicinal chemistry. 2015, 92, 882-889. ISSN:2772-4174.

PAOLINO, D. et al. “Innovative bola-surfactant niosomes as topical delivery systems of 5-fluorouracil for the treatment of skin cancer”. International Journal of Pharmaceutics. 2008, 353 (1-2), 233-242. ISSN: 0378-5173.

COSCO, D. et al. “Ultradeformable liposomes as multidrug carrier of resveratrol and 5- fluorouracil for their topical delivery”. International Journal of Pharmaceutics. 2015, 489, 1–10. ISSN: 0378-5173.

SAHU, P. et al. “pH responsive 5-fluorouracil loaded biocompatible nanogels for topical chemotherapy of aggressive melanoma”. Colloids and Surface B: Biointerfaces. 2019, 174, 232–245.ISSN: 0927-7765.

HE, T. et al. “5-Fluorouracil monodispersed chitosan microspheres: Microfluidic chip fabrication with crosslinking, characterization, drug release and anticancer activity”. Carbohydrate Polymers. 2020, 236, 116094. ISSN: 0144-8617.

FERRER, D.; ÁLVAREZ, R. A.; BAEZA, A. N. “Desarrollo de un Sistema de partículas poliméricas nano-estructuradas para la liberación controlada del 5-Fluorouracilo”. Revista Cubana de Química. 2021, 33(2),113-135. ISSN: 2224-5421.

GARCÍA, J. A.; DÍAZ, M. E. “Characterization of binding sites in molecularlyimprinted polymers”. Sensors and Actuators B. 2007, 123, 1180–1194. ISSN: 0925-4005.

SAHA, P.; DAS, P. S. “Advances in Controlled Release Technology in Pharmaceuticals: A Review”. World Journal of Pharmacy and Pharmaceutical Sciences. 2017, 6, 2070-2084. ISSN: 2321-3086.

SIMEONOVA, M. et al. “Study on the role of 5-fluorouracil in the polymerization of butylcyanocrylate during the formation of nanoparticles”. Journal of Drug Targeting, 2004, 12, 49-56. ISSN: 1061-186X.



How to Cite

Ferrer-Viñals, D., Álvarez-Brito, R., & Baeza-Fonte, A. N. (2023). Release study of 5-fluorouracil from poly (butylcyanoacrylate) nanoparticles. Revista Cubana De Química, 35(2), 200–214. Retrieved from