In-silico evaluation of peptide hybrids of di-31 as potential plant defense modulators via activation FLS2

Authors

  • Juan Pablo Figueroa-Macías Centro de Estudio de Productos Naturales, Facultad de Química, Universidad de La Habana, La Habana, Cuba
  • Fidel E-Morales Centro de Ingeniería Genética y Biotecnología (CIGB), La Habana, Cuba
  • Yoana Perez-Badell Laboratorio de Química Computacional y Teórica, Facultad de Química, Universidad de La Habana, La Habana, Cuba
  • Yamilet-Coll Coll Centro de Estudio de Productos Naturales, Facultad de Química, Universidad de La Habana, La Habana, Cuba

Keywords:

FLS2; flagelina; híbridos esteroide-péptido; defensina; defensa de plantas.

Abstract

In order to manage stress, plants must balance growth and defense processes at
molecular level. Some control over these processes, would allow mankind to develop an
efficient and sustainable agriculture. Within this field, the study of defense stimulators’ response steps out as possible substituents of agrochemicals. Thus, by hybridizing the steroidal biostimulant DI-31 with the γ-core motif of the antifungal defensin MtDef4
(GRCRGFRRRC), it was intended to potentiate the steroid bioactivity. Molecular docking studies of the designed hybrids against FLS2 receptor, as a potential way for inducing the immune response in plants, were carried out along with DFT calculations
including frontier molecular orbitals analysis for the ligands; pKd values for ligand-protein complex were also estimated with the neural network NNScore 2,0. The results displayed the possibility that mono-steroidal hybrid DI31-GMA4, could be recognized by the studied receptor and, subsequently, induce the corresponding biological activity as defense stimulator.

References

WANG, W.; WANG, Z.-Y. “At the intersection of plant growth and immunity“,

Cell host & microbe. 2014, 15, 400-402. DOI 10.1016/j.chom.2014.03.014.

FIGUEROA-MACÍAS, J.P.; COLL, Y.; NÚÑEZ, M.; DÍAZ, K.; OLEA, A.F.;

ESPINOZA, L. “Plant Growth-Defense Trade-Offs: Molecular Processes Leading to

Physiological Changes“, Int. J. Mol. Sci. 2021, 22, 693-711. DOI

3390/ijms22020693.

MATILLA, M.A. Chapter 10 - “Metabolic Responses of Plants Upon Different

Plant–Pathogen Interactions. In Plant Metabolites and Regulation Under Environmental

Stress“, Ahmad, P., Ahanger, M.A., Singh, V.P., Tripathi, D.K., Alam, P., Alyemeni,

M.N., Eds.; Academic Press: 2018; pp. 195-214.

CUI, H.; TSUDA, K.; PARKER, J.E. “Effector-triggered immunity: from

pathogen perception to robust defense“, Annu. Rev. Plant Biol. 2015, 66, 487–511. DOI

1146/annurev-arplant-050213-040012.

REIMER-MICHALSKI, E.M.; CONRATH, U. “Innate immune memory in

plants“, Semin Immunol. 2016, 28, 319-327. DOI 10.1016/j.smim.2016.05.006.

GÓMEZ-GÓMEZ, L.; BOLLER, T. “FLS2: An LRR Receptor–like Kinase

Involved in the Perception of the Bacterial Elicitor Flagellin in Arabidopsis“, Molecular

Cell. 2000, 5, 1003-1011. DOI 10.1016/s1097-2765(00)80265-8.

KANYUKA, K.; RUDD, J.J. “Cell surface immune receptors: the guardians of

the plant’s extracellular spaces“, J Current opinion in plant biology. 2019, 50, 1-8. DOI

1016/j.pbi.2019.02.005.

CHECKER, V.G.; KUSHWAHA, H.R.; KUMARI, P.; YADAV, S. “Role of

Phytohormones in Plant Defense: Signaling and Cross Talk. In Molecular Aspects of

Plant-Pathogen Interaction“, Singh, A., Singh, I.K., Eds.; Springer Nature Singapore Pte

Ltd: 2018. DOI 10.1007/978-981-10-7371-7_7.

SUN, Y.; LI, L.; MACHO, A.P.; HAN, Z.; HU, Z.; ZIPFEL, C.; ZHOU, J.M.;

CHAI, J. “Structural basis for flg22-induced activation of the Arabidopsis FLS2-BAK1

immune complex“, Science. 2013, 342, 624-628. DOI 10.1126/science.1243825.

LOZANO-DURÁN, R.; ZIPFEL, C. “Trade-off between growth and immunity:

Role of brassinosteroids“, Trends Plant Sci. 2015, 20, 12-19. DOI

1016/j.tplants.2014.09.003.

SAGARAM, U.S.; EL-MOUNAD, K.; BUCHKO, G.W.; PANDURANGI, R.S.;

SMITH, T.J.; SHAH, D.M.; DANFORTH, D.; BERG, H.R.; KAUR, J. “Structural and

Functional Studies of a Phosphatidic AcidBinding Antifungal Plant Defensin MtDef4:

Identification of an RGFRRR Motif Governing Fungal Cell Entry“, PLoS ONE. 2013, 8,

e82485. DOI 10.1371/journal.pone.0082485.

SHER KHAN, R.; IQBAL, A.; MALAK, R.; SHEHRYAR, K.; ATTIA, S.;

AHMED, T.; ALI KHAN, M.; ARIF, M.; MII, M. “Plant defensins: types, mechanism

of action and prospects of genetic engineering for enhanced disease resistance in

plants“, 3 Biotech. 2019, 9, 192-204. DOI 10.1007/s13205-019-1725-5.

CAMPOS, M.L.; DE SOUZA, C.M.; DE OLIVEIRA, K.B.S.; DIAS, S.C.;

FRANCO, O.L. “The role of antimicrobial peptides in plant immunity“, J Exp Bot.

, 69, 4997-5011. DOI 10.1093/jxb/ery294.

KOVALEVA, V.; BUKHTEEVA, I.; KIT, O.Y.; NESMELOVA, I.V. “Plant

Defensins from a Structural Perspective“, Int J Mol Sci. 2020, 21, 5307-5331. DOI

3390/ijms21155307.

SAGARAM, U.S.; PANDURANGI, R.; KAUR, J.; SMITH, T.J.; SHAH, D.M.

“Structure-Activity Determinants in Antifungal Plant Defensins MsDef1 and MtDef4

with Different Modes of Action against Fusariumgraminearum“, PLoS ONE 2011, 6,

e18550. DOI 10.1371/journal.pone.0018550.

WEI, H.; MOVAHEDI, A.; XU, C.; SUN, W.; WANG, P.; LI, D.; YIN, T.;

ZHUGE, Q. “Characterization, Expression Profiling, and Functional Analysis of PtDef, a Defensin-Encoding Gene From Populus trichocarpa“, Front Microbiol. 2020, 11, 106-

DOI 10.3389/fmicb.2020.00106.

FURIO, R.N.; SALAZAR, S.M.; MARTÍNEZ-ZAMORA, G.M.; COLL, Y.;

HAEL-CONRAD, V.; DÍAZ-RICCI, J.C. “Brassinosteroids promote growth, fruit

quality and protection against Botrytis on Fragaria x ananassa“, Eur J Plant Pathol.

, 154, 801-810. DOI 10.1007/s10658-019-01704-3.

MORENO-CASTILLO, E.; RAMÍREZ-ECHEMENDÍA, D.P.; HERNÁNDEZ-

CAMPOALEGRE, G.; MESA-TEJEDA, D.; COLL-MANCHADO, F.; COLL-

GARCÍA, Y. “In silico identification of new potentially active brassinosteroid

analogues“, Steroids 2018, 138, 35-42. DOI 10.1016/j.steroids.2018.06.009.

ZHOU, P.; JIN, B.; LI, H.; HUANG, S.Y. “HPEPDOCK: a web server for blind

peptide-protein docking based on a hierarchical algorithm“, Nucleic Acids Res. 2018,

, W443-W450. DOI 10.1093/nar/gky357.

HALGREN, T.A. “Merck Molecular Force Field. I. Basis, Form, Scope,

Parameterization, and Performance of MMFF94“, J. Comput. Chem. 1996, 17, 490-519.

DOI 10.1002/(sici)1096-987x(199604)17:5/6<490::aid-jcc1>3.0.co;2-p.

SEGONZAC C; NIMCHUK ZL; BECK M; et al. “The shoot apical meristem

regulatory peptide CLV3 does not activate innate immunity“, Plant Cell. 2012, 24,

–3192. DOI 10.1105/tpc.111.091264.

TROTT, O.; OLSON, A.J. “AutoDock Vina: Improving the Speed and Accuracy of

Docking with a New Scoring Function, Efficient Optimization and Multithreading“, J.

Comput. Chem. 2010, 31, 455-461. DOI 10.1002/jcc.21334.

DURRANT, J.D.; MCCAMMON, J.A. “NNScore 2.0: a neural-network

receptor-ligand scoring function“, J Chem Inf Model. 2011, 51, 2897-2903. DOI

1021/ci2003889.

DURRANT, J.D.; MCCAMMON, J.A. “BINANA: a novel algorithm for ligand-

binding characterization“, J Mol Graph Model. 2011, 29, 888-893. DOI

1016/J.JMGM.2011.01.004.

FRISCH, M.J.; TRUCKS, G.W.; SCHLEGEL, H.B. et al. Gaussian 09,

Gaussian Inc: Wallingford, CT, USA, 2009.

BECKE, A.D. “A new mixing of Hartree–Fock and local density‐functional

theories“. 1993, 98, 1372-1377. DOI 10.1063/1.464304.

GRIMME, S.; EHRLICH, S.; GOERIGK, L. “Effect of the damping function in

dispersion corrected density functional theory“, Journal of computational chemistry.

, 32, 1456-1465. DOI 10.1002/jcc.21759.

DENNINGTON, R.; KEITH, T.; MILLAM, J. Gauss View, Semichem Inc.:

Shawnee, KS, USA, 2009.

ROBATZEK, S.; WIRTHMUELLER, L. “Mapping FLS2 function to structure:

LRRs, kinase and its working bits“, Protoplasma. 2013, 250, 671-681. DOI

1007/s00709-012-0459-6.

WEI, Y.; BALACEANU, A.; RUFIAN, J.S.; SEGONZAC, C.; ZHAO, A.;

MORCILLO, R.J.L.; MACHO, A.P. “An immune receptor complex evolved in soybean

to perceive a polymorphic bacterial flagellin“, Nat Commun. 2020, 11, 3763-3774. DOI

1038/s41467-020-17573-y.

MUELLER K.; et al. “Chimeric FLS2 receptors reveal the basis for differential

flagellin perception in Arabidopsis and Tomato“, Plant Cell. 2012, 24, 2213–2224. DOI

1105/tpc.112.096073

LEE, H.; CHAH, O.K.; SHEEN, J. “Stem-cell-triggered immunity through

CLV3p-FLS2 signalling“, Nature. 2011, 473, 376-379. DOI 10.1038/nature09958.

FURIO, R.N.; MARTÍNEZ-ZAMORA, G.M.; SALAZAr, S.M.; COLL, Y.;

PERATO, S.M.; MARTOS, G.G.; DÍAZ RICCI, J.C. “Role of calcium in the defense

response induced by brassinosteroids in strawberry plants“, Scientia Horticulturae.

, 261. DOI 10.1016/j.scienta.2019.109010.

MUELLER K; CHINCHILLA D; ALBERT M; et al. “Contamination risks in

work with synthetic peptides: flg22 as an example of a pirate in commercial peptide

preparations“, Plant Cell. 2012, 24, 3193–3197. DOI 10.1105/tpc.112.096073.

MORRIS G.M.; HUEY R.; LINDSTROM W.; SANNER M.F.; BELEW R.K.;

GOODSELL D.S.; OLSON A.J. “AutoDock4 and AutoDockTools4: automated docking

with selective receptor flexibility“, J. Comput. Chem. 2009, 30, 2785–2791. DOI

1002/jcc.21256.

NASEEM, M.; SRIVASTAVA, M.; OSMANOGLU, O.; IQBAL, J.; HOWARi,

F.M.; ALREMEITHI, F.A.; DANDEKAR, T. “Molecular Modeling of the Interaction

Between Stem Cell Peptide and Immune Receptor in Plants“, Methods Mol Biol 2020,

, 67-77. DOI 10.1007/978-1-0716-0183-9_8.

Published

2023-12-18

How to Cite

Figueroa-Macías, J. P., E-Morales, F., Perez-Badell, Y., & Coll, Y.-C. (2023). In-silico evaluation of peptide hybrids of di-31 as potential plant defense modulators via activation FLS2. Revista Cubana De Química, 35(3), 350–367. Retrieved from https://cubanaquimica.uo.edu.cu/index.php/cq/article/view/5341

Issue

Section

Artículos