Evaluación In-sillico híbridos peptídicos de di-31 como posibles moduladores de defensa de las plantas mediante la activación FLS2
Palavras-chave:
FLS2; flagelina; híbridos esteroide-péptido; defensina; defensa de plantas.Resumo
Para controlar el estrés, las plantas deben equilibrar los procesos de crecimiento y
defensa a nivel molecular, un control sobre estos procesos permitiría a la humanidad desarrollar una agricultura eficiente y sostenible. Para potenciar la bioactividad de los esteroides, se utilizó la hibridación del bioestimulante esteroideo DI-31 con el γ-core del
antifúngico defensiva MtDef4 (GRCRGFRRRC) y se llevaron a cabo estudios de
acoplamiento molecular contra el receptor FLS2, como potencial para inducir una respuesta inmune en las plantas, junto a cálculos DFT que incluyeron un análisis de Orbitales Moleculares para los ligandos. También se estimaron los valores de pKd para el complejo ligando-proteína con la red neuronal NNScore 2,0. Los resultados mostraron la posibilidad de que el híbrido DI31-GMA4, pudiera ser reconocido por el receptor estudiado y posteriormente inducir la actividad biológica correspondiente como
estimulador de defensa.
Referências
WANG, W.; WANG, Z.-Y. “At the intersection of plant growth and immunity“,
Cell host & microbe. 2014, 15, 400-402. DOI 10.1016/j.chom.2014.03.014.
FIGUEROA-MACÍAS, J.P.; COLL, Y.; NÚÑEZ, M.; DÍAZ, K.; OLEA, A.F.;
ESPINOZA, L. “Plant Growth-Defense Trade-Offs: Molecular Processes Leading to
Physiological Changes“, Int. J. Mol. Sci. 2021, 22, 693-711. DOI
3390/ijms22020693.
MATILLA, M.A. Chapter 10 - “Metabolic Responses of Plants Upon Different
Plant–Pathogen Interactions. In Plant Metabolites and Regulation Under Environmental
Stress“, Ahmad, P., Ahanger, M.A., Singh, V.P., Tripathi, D.K., Alam, P., Alyemeni,
M.N., Eds.; Academic Press: 2018; pp. 195-214.
CUI, H.; TSUDA, K.; PARKER, J.E. “Effector-triggered immunity: from
pathogen perception to robust defense“, Annu. Rev. Plant Biol. 2015, 66, 487–511. DOI
1146/annurev-arplant-050213-040012.
REIMER-MICHALSKI, E.M.; CONRATH, U. “Innate immune memory in
plants“, Semin Immunol. 2016, 28, 319-327. DOI 10.1016/j.smim.2016.05.006.
GÓMEZ-GÓMEZ, L.; BOLLER, T. “FLS2: An LRR Receptor–like Kinase
Involved in the Perception of the Bacterial Elicitor Flagellin in Arabidopsis“, Molecular
Cell. 2000, 5, 1003-1011. DOI 10.1016/s1097-2765(00)80265-8.
KANYUKA, K.; RUDD, J.J. “Cell surface immune receptors: the guardians of
the plant’s extracellular spaces“, J Current opinion in plant biology. 2019, 50, 1-8. DOI
1016/j.pbi.2019.02.005.
CHECKER, V.G.; KUSHWAHA, H.R.; KUMARI, P.; YADAV, S. “Role of
Phytohormones in Plant Defense: Signaling and Cross Talk. In Molecular Aspects of
Plant-Pathogen Interaction“, Singh, A., Singh, I.K., Eds.; Springer Nature Singapore Pte
Ltd: 2018. DOI 10.1007/978-981-10-7371-7_7.
SUN, Y.; LI, L.; MACHO, A.P.; HAN, Z.; HU, Z.; ZIPFEL, C.; ZHOU, J.M.;
CHAI, J. “Structural basis for flg22-induced activation of the Arabidopsis FLS2-BAK1
immune complex“, Science. 2013, 342, 624-628. DOI 10.1126/science.1243825.
LOZANO-DURÁN, R.; ZIPFEL, C. “Trade-off between growth and immunity:
Role of brassinosteroids“, Trends Plant Sci. 2015, 20, 12-19. DOI
1016/j.tplants.2014.09.003.
SAGARAM, U.S.; EL-MOUNAD, K.; BUCHKO, G.W.; PANDURANGI, R.S.;
SMITH, T.J.; SHAH, D.M.; DANFORTH, D.; BERG, H.R.; KAUR, J. “Structural and
Functional Studies of a Phosphatidic AcidBinding Antifungal Plant Defensin MtDef4:
Identification of an RGFRRR Motif Governing Fungal Cell Entry“, PLoS ONE. 2013, 8,
e82485. DOI 10.1371/journal.pone.0082485.
SHER KHAN, R.; IQBAL, A.; MALAK, R.; SHEHRYAR, K.; ATTIA, S.;
AHMED, T.; ALI KHAN, M.; ARIF, M.; MII, M. “Plant defensins: types, mechanism
of action and prospects of genetic engineering for enhanced disease resistance in
plants“, 3 Biotech. 2019, 9, 192-204. DOI 10.1007/s13205-019-1725-5.
CAMPOS, M.L.; DE SOUZA, C.M.; DE OLIVEIRA, K.B.S.; DIAS, S.C.;
FRANCO, O.L. “The role of antimicrobial peptides in plant immunity“, J Exp Bot.
, 69, 4997-5011. DOI 10.1093/jxb/ery294.
KOVALEVA, V.; BUKHTEEVA, I.; KIT, O.Y.; NESMELOVA, I.V. “Plant
Defensins from a Structural Perspective“, Int J Mol Sci. 2020, 21, 5307-5331. DOI
3390/ijms21155307.
SAGARAM, U.S.; PANDURANGI, R.; KAUR, J.; SMITH, T.J.; SHAH, D.M.
“Structure-Activity Determinants in Antifungal Plant Defensins MsDef1 and MtDef4
with Different Modes of Action against Fusariumgraminearum“, PLoS ONE 2011, 6,
e18550. DOI 10.1371/journal.pone.0018550.
WEI, H.; MOVAHEDI, A.; XU, C.; SUN, W.; WANG, P.; LI, D.; YIN, T.;
ZHUGE, Q. “Characterization, Expression Profiling, and Functional Analysis of PtDef, a Defensin-Encoding Gene From Populus trichocarpa“, Front Microbiol. 2020, 11, 106-
DOI 10.3389/fmicb.2020.00106.
FURIO, R.N.; SALAZAR, S.M.; MARTÍNEZ-ZAMORA, G.M.; COLL, Y.;
HAEL-CONRAD, V.; DÍAZ-RICCI, J.C. “Brassinosteroids promote growth, fruit
quality and protection against Botrytis on Fragaria x ananassa“, Eur J Plant Pathol.
, 154, 801-810. DOI 10.1007/s10658-019-01704-3.
MORENO-CASTILLO, E.; RAMÍREZ-ECHEMENDÍA, D.P.; HERNÁNDEZ-
CAMPOALEGRE, G.; MESA-TEJEDA, D.; COLL-MANCHADO, F.; COLL-
GARCÍA, Y. “In silico identification of new potentially active brassinosteroid
analogues“, Steroids 2018, 138, 35-42. DOI 10.1016/j.steroids.2018.06.009.
ZHOU, P.; JIN, B.; LI, H.; HUANG, S.Y. “HPEPDOCK: a web server for blind
peptide-protein docking based on a hierarchical algorithm“, Nucleic Acids Res. 2018,
, W443-W450. DOI 10.1093/nar/gky357.
HALGREN, T.A. “Merck Molecular Force Field. I. Basis, Form, Scope,
Parameterization, and Performance of MMFF94“, J. Comput. Chem. 1996, 17, 490-519.
DOI 10.1002/(sici)1096-987x(199604)17:5/6<490::aid-jcc1>3.0.co;2-p.
SEGONZAC C; NIMCHUK ZL; BECK M; et al. “The shoot apical meristem
regulatory peptide CLV3 does not activate innate immunity“, Plant Cell. 2012, 24,
–3192. DOI 10.1105/tpc.111.091264.
TROTT, O.; OLSON, A.J. “AutoDock Vina: Improving the Speed and Accuracy of
Docking with a New Scoring Function, Efficient Optimization and Multithreading“, J.
Comput. Chem. 2010, 31, 455-461. DOI 10.1002/jcc.21334.
DURRANT, J.D.; MCCAMMON, J.A. “NNScore 2.0: a neural-network
receptor-ligand scoring function“, J Chem Inf Model. 2011, 51, 2897-2903. DOI
1021/ci2003889.
DURRANT, J.D.; MCCAMMON, J.A. “BINANA: a novel algorithm for ligand-
binding characterization“, J Mol Graph Model. 2011, 29, 888-893. DOI
1016/J.JMGM.2011.01.004.
FRISCH, M.J.; TRUCKS, G.W.; SCHLEGEL, H.B. et al. Gaussian 09,
Gaussian Inc: Wallingford, CT, USA, 2009.
BECKE, A.D. “A new mixing of Hartree–Fock and local density‐functional
theories“. 1993, 98, 1372-1377. DOI 10.1063/1.464304.
GRIMME, S.; EHRLICH, S.; GOERIGK, L. “Effect of the damping function in
dispersion corrected density functional theory“, Journal of computational chemistry.
, 32, 1456-1465. DOI 10.1002/jcc.21759.
DENNINGTON, R.; KEITH, T.; MILLAM, J. Gauss View, Semichem Inc.:
Shawnee, KS, USA, 2009.
ROBATZEK, S.; WIRTHMUELLER, L. “Mapping FLS2 function to structure:
LRRs, kinase and its working bits“, Protoplasma. 2013, 250, 671-681. DOI
1007/s00709-012-0459-6.
WEI, Y.; BALACEANU, A.; RUFIAN, J.S.; SEGONZAC, C.; ZHAO, A.;
MORCILLO, R.J.L.; MACHO, A.P. “An immune receptor complex evolved in soybean
to perceive a polymorphic bacterial flagellin“, Nat Commun. 2020, 11, 3763-3774. DOI
1038/s41467-020-17573-y.
MUELLER K.; et al. “Chimeric FLS2 receptors reveal the basis for differential
flagellin perception in Arabidopsis and Tomato“, Plant Cell. 2012, 24, 2213–2224. DOI
1105/tpc.112.096073
LEE, H.; CHAH, O.K.; SHEEN, J. “Stem-cell-triggered immunity through
CLV3p-FLS2 signalling“, Nature. 2011, 473, 376-379. DOI 10.1038/nature09958.
FURIO, R.N.; MARTÍNEZ-ZAMORA, G.M.; SALAZAr, S.M.; COLL, Y.;
PERATO, S.M.; MARTOS, G.G.; DÍAZ RICCI, J.C. “Role of calcium in the defense
response induced by brassinosteroids in strawberry plants“, Scientia Horticulturae.
, 261. DOI 10.1016/j.scienta.2019.109010.
MUELLER K; CHINCHILLA D; ALBERT M; et al. “Contamination risks in
work with synthetic peptides: flg22 as an example of a pirate in commercial peptide
preparations“, Plant Cell. 2012, 24, 3193–3197. DOI 10.1105/tpc.112.096073.
MORRIS G.M.; HUEY R.; LINDSTROM W.; SANNER M.F.; BELEW R.K.;
GOODSELL D.S.; OLSON A.J. “AutoDock4 and AutoDockTools4: automated docking
with selective receptor flexibility“, J. Comput. Chem. 2009, 30, 2785–2791. DOI
1002/jcc.21256.
NASEEM, M.; SRIVASTAVA, M.; OSMANOGLU, O.; IQBAL, J.; HOWARi,
F.M.; ALREMEITHI, F.A.; DANDEKAR, T. “Molecular Modeling of the Interaction
Between Stem Cell Peptide and Immune Receptor in Plants“, Methods Mol Biol 2020,
, 67-77. DOI 10.1007/978-1-0716-0183-9_8.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2024 Juan Pablo Figueroa-Macías, Fidel E-Morales, Yoana Perez-Badell, Yamilet-Coll Coll

Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Esta revista oferece acesso aberto imediato ao seu conteúdo, com base no princípio de que oferecer ao público o acesso gratuito à pesquisa contribui para uma maior troca global de conhecimento.