Evaluación In-sillico híbridos peptídicos de di-31 como posibles moduladores de defensa de las plantas mediante la activación FLS2

Autores

  • Juan Pablo Figueroa-Macías Centro de Estudio de Productos Naturales, Facultad de Química, Universidad de La Habana, La Habana, Cuba
  • Fidel E-Morales Centro de Ingeniería Genética y Biotecnología (CIGB), La Habana, Cuba
  • Yoana Perez-Badell Laboratorio de Química Computacional y Teórica, Facultad de Química, Universidad de La Habana, La Habana, Cuba
  • Yamilet-Coll Coll Centro de Estudio de Productos Naturales, Facultad de Química, Universidad de La Habana, La Habana, Cuba

Palavras-chave:

FLS2; flagelina; híbridos esteroide-péptido; defensina; defensa de plantas.

Resumo

Para controlar el estrés, las plantas deben equilibrar los procesos de crecimiento y
defensa a nivel molecular, un control sobre estos procesos permitiría a la humanidad desarrollar una agricultura eficiente y sostenible. Para potenciar la bioactividad de los esteroides, se utilizó la hibridación del bioestimulante esteroideo DI-31 con el γ-core del
antifúngico defensiva MtDef4 (GRCRGFRRRC) y se llevaron a cabo estudios de
acoplamiento molecular contra el receptor FLS2, como potencial para inducir una respuesta inmune en las plantas, junto a cálculos DFT que incluyeron un análisis de Orbitales Moleculares para los ligandos. También se estimaron los valores de pKd para el complejo ligando-proteína con la red neuronal NNScore 2,0. Los resultados mostraron la posibilidad de que el híbrido DI31-GMA4, pudiera ser reconocido por el receptor estudiado y posteriormente inducir la actividad biológica correspondiente como
estimulador de defensa.

Referências

WANG, W.; WANG, Z.-Y. “At the intersection of plant growth and immunity“,

Cell host & microbe. 2014, 15, 400-402. DOI 10.1016/j.chom.2014.03.014.

FIGUEROA-MACÍAS, J.P.; COLL, Y.; NÚÑEZ, M.; DÍAZ, K.; OLEA, A.F.;

ESPINOZA, L. “Plant Growth-Defense Trade-Offs: Molecular Processes Leading to

Physiological Changes“, Int. J. Mol. Sci. 2021, 22, 693-711. DOI

3390/ijms22020693.

MATILLA, M.A. Chapter 10 - “Metabolic Responses of Plants Upon Different

Plant–Pathogen Interactions. In Plant Metabolites and Regulation Under Environmental

Stress“, Ahmad, P., Ahanger, M.A., Singh, V.P., Tripathi, D.K., Alam, P., Alyemeni,

M.N., Eds.; Academic Press: 2018; pp. 195-214.

CUI, H.; TSUDA, K.; PARKER, J.E. “Effector-triggered immunity: from

pathogen perception to robust defense“, Annu. Rev. Plant Biol. 2015, 66, 487–511. DOI

1146/annurev-arplant-050213-040012.

REIMER-MICHALSKI, E.M.; CONRATH, U. “Innate immune memory in

plants“, Semin Immunol. 2016, 28, 319-327. DOI 10.1016/j.smim.2016.05.006.

GÓMEZ-GÓMEZ, L.; BOLLER, T. “FLS2: An LRR Receptor–like Kinase

Involved in the Perception of the Bacterial Elicitor Flagellin in Arabidopsis“, Molecular

Cell. 2000, 5, 1003-1011. DOI 10.1016/s1097-2765(00)80265-8.

KANYUKA, K.; RUDD, J.J. “Cell surface immune receptors: the guardians of

the plant’s extracellular spaces“, J Current opinion in plant biology. 2019, 50, 1-8. DOI

1016/j.pbi.2019.02.005.

CHECKER, V.G.; KUSHWAHA, H.R.; KUMARI, P.; YADAV, S. “Role of

Phytohormones in Plant Defense: Signaling and Cross Talk. In Molecular Aspects of

Plant-Pathogen Interaction“, Singh, A., Singh, I.K., Eds.; Springer Nature Singapore Pte

Ltd: 2018. DOI 10.1007/978-981-10-7371-7_7.

SUN, Y.; LI, L.; MACHO, A.P.; HAN, Z.; HU, Z.; ZIPFEL, C.; ZHOU, J.M.;

CHAI, J. “Structural basis for flg22-induced activation of the Arabidopsis FLS2-BAK1

immune complex“, Science. 2013, 342, 624-628. DOI 10.1126/science.1243825.

LOZANO-DURÁN, R.; ZIPFEL, C. “Trade-off between growth and immunity:

Role of brassinosteroids“, Trends Plant Sci. 2015, 20, 12-19. DOI

1016/j.tplants.2014.09.003.

SAGARAM, U.S.; EL-MOUNAD, K.; BUCHKO, G.W.; PANDURANGI, R.S.;

SMITH, T.J.; SHAH, D.M.; DANFORTH, D.; BERG, H.R.; KAUR, J. “Structural and

Functional Studies of a Phosphatidic AcidBinding Antifungal Plant Defensin MtDef4:

Identification of an RGFRRR Motif Governing Fungal Cell Entry“, PLoS ONE. 2013, 8,

e82485. DOI 10.1371/journal.pone.0082485.

SHER KHAN, R.; IQBAL, A.; MALAK, R.; SHEHRYAR, K.; ATTIA, S.;

AHMED, T.; ALI KHAN, M.; ARIF, M.; MII, M. “Plant defensins: types, mechanism

of action and prospects of genetic engineering for enhanced disease resistance in

plants“, 3 Biotech. 2019, 9, 192-204. DOI 10.1007/s13205-019-1725-5.

CAMPOS, M.L.; DE SOUZA, C.M.; DE OLIVEIRA, K.B.S.; DIAS, S.C.;

FRANCO, O.L. “The role of antimicrobial peptides in plant immunity“, J Exp Bot.

, 69, 4997-5011. DOI 10.1093/jxb/ery294.

KOVALEVA, V.; BUKHTEEVA, I.; KIT, O.Y.; NESMELOVA, I.V. “Plant

Defensins from a Structural Perspective“, Int J Mol Sci. 2020, 21, 5307-5331. DOI

3390/ijms21155307.

SAGARAM, U.S.; PANDURANGI, R.; KAUR, J.; SMITH, T.J.; SHAH, D.M.

“Structure-Activity Determinants in Antifungal Plant Defensins MsDef1 and MtDef4

with Different Modes of Action against Fusariumgraminearum“, PLoS ONE 2011, 6,

e18550. DOI 10.1371/journal.pone.0018550.

WEI, H.; MOVAHEDI, A.; XU, C.; SUN, W.; WANG, P.; LI, D.; YIN, T.;

ZHUGE, Q. “Characterization, Expression Profiling, and Functional Analysis of PtDef, a Defensin-Encoding Gene From Populus trichocarpa“, Front Microbiol. 2020, 11, 106-

DOI 10.3389/fmicb.2020.00106.

FURIO, R.N.; SALAZAR, S.M.; MARTÍNEZ-ZAMORA, G.M.; COLL, Y.;

HAEL-CONRAD, V.; DÍAZ-RICCI, J.C. “Brassinosteroids promote growth, fruit

quality and protection against Botrytis on Fragaria x ananassa“, Eur J Plant Pathol.

, 154, 801-810. DOI 10.1007/s10658-019-01704-3.

MORENO-CASTILLO, E.; RAMÍREZ-ECHEMENDÍA, D.P.; HERNÁNDEZ-

CAMPOALEGRE, G.; MESA-TEJEDA, D.; COLL-MANCHADO, F.; COLL-

GARCÍA, Y. “In silico identification of new potentially active brassinosteroid

analogues“, Steroids 2018, 138, 35-42. DOI 10.1016/j.steroids.2018.06.009.

ZHOU, P.; JIN, B.; LI, H.; HUANG, S.Y. “HPEPDOCK: a web server for blind

peptide-protein docking based on a hierarchical algorithm“, Nucleic Acids Res. 2018,

, W443-W450. DOI 10.1093/nar/gky357.

HALGREN, T.A. “Merck Molecular Force Field. I. Basis, Form, Scope,

Parameterization, and Performance of MMFF94“, J. Comput. Chem. 1996, 17, 490-519.

DOI 10.1002/(sici)1096-987x(199604)17:5/6<490::aid-jcc1>3.0.co;2-p.

SEGONZAC C; NIMCHUK ZL; BECK M; et al. “The shoot apical meristem

regulatory peptide CLV3 does not activate innate immunity“, Plant Cell. 2012, 24,

–3192. DOI 10.1105/tpc.111.091264.

TROTT, O.; OLSON, A.J. “AutoDock Vina: Improving the Speed and Accuracy of

Docking with a New Scoring Function, Efficient Optimization and Multithreading“, J.

Comput. Chem. 2010, 31, 455-461. DOI 10.1002/jcc.21334.

DURRANT, J.D.; MCCAMMON, J.A. “NNScore 2.0: a neural-network

receptor-ligand scoring function“, J Chem Inf Model. 2011, 51, 2897-2903. DOI

1021/ci2003889.

DURRANT, J.D.; MCCAMMON, J.A. “BINANA: a novel algorithm for ligand-

binding characterization“, J Mol Graph Model. 2011, 29, 888-893. DOI

1016/J.JMGM.2011.01.004.

FRISCH, M.J.; TRUCKS, G.W.; SCHLEGEL, H.B. et al. Gaussian 09,

Gaussian Inc: Wallingford, CT, USA, 2009.

BECKE, A.D. “A new mixing of Hartree–Fock and local density‐functional

theories“. 1993, 98, 1372-1377. DOI 10.1063/1.464304.

GRIMME, S.; EHRLICH, S.; GOERIGK, L. “Effect of the damping function in

dispersion corrected density functional theory“, Journal of computational chemistry.

, 32, 1456-1465. DOI 10.1002/jcc.21759.

DENNINGTON, R.; KEITH, T.; MILLAM, J. Gauss View, Semichem Inc.:

Shawnee, KS, USA, 2009.

ROBATZEK, S.; WIRTHMUELLER, L. “Mapping FLS2 function to structure:

LRRs, kinase and its working bits“, Protoplasma. 2013, 250, 671-681. DOI

1007/s00709-012-0459-6.

WEI, Y.; BALACEANU, A.; RUFIAN, J.S.; SEGONZAC, C.; ZHAO, A.;

MORCILLO, R.J.L.; MACHO, A.P. “An immune receptor complex evolved in soybean

to perceive a polymorphic bacterial flagellin“, Nat Commun. 2020, 11, 3763-3774. DOI

1038/s41467-020-17573-y.

MUELLER K.; et al. “Chimeric FLS2 receptors reveal the basis for differential

flagellin perception in Arabidopsis and Tomato“, Plant Cell. 2012, 24, 2213–2224. DOI

1105/tpc.112.096073

LEE, H.; CHAH, O.K.; SHEEN, J. “Stem-cell-triggered immunity through

CLV3p-FLS2 signalling“, Nature. 2011, 473, 376-379. DOI 10.1038/nature09958.

FURIO, R.N.; MARTÍNEZ-ZAMORA, G.M.; SALAZAr, S.M.; COLL, Y.;

PERATO, S.M.; MARTOS, G.G.; DÍAZ RICCI, J.C. “Role of calcium in the defense

response induced by brassinosteroids in strawberry plants“, Scientia Horticulturae.

, 261. DOI 10.1016/j.scienta.2019.109010.

MUELLER K; CHINCHILLA D; ALBERT M; et al. “Contamination risks in

work with synthetic peptides: flg22 as an example of a pirate in commercial peptide

preparations“, Plant Cell. 2012, 24, 3193–3197. DOI 10.1105/tpc.112.096073.

MORRIS G.M.; HUEY R.; LINDSTROM W.; SANNER M.F.; BELEW R.K.;

GOODSELL D.S.; OLSON A.J. “AutoDock4 and AutoDockTools4: automated docking

with selective receptor flexibility“, J. Comput. Chem. 2009, 30, 2785–2791. DOI

1002/jcc.21256.

NASEEM, M.; SRIVASTAVA, M.; OSMANOGLU, O.; IQBAL, J.; HOWARi,

F.M.; ALREMEITHI, F.A.; DANDEKAR, T. “Molecular Modeling of the Interaction

Between Stem Cell Peptide and Immune Receptor in Plants“, Methods Mol Biol 2020,

, 67-77. DOI 10.1007/978-1-0716-0183-9_8.

Publicado

2023-12-18

Como Citar

Figueroa-Macías, J. P., E-Morales, F., Perez-Badell, Y., & Coll, Y.-C. (2023). Evaluación In-sillico híbridos peptídicos de di-31 como posibles moduladores de defensa de las plantas mediante la activación FLS2. Revista Cubana De Química, 35(3), 350–367. Recuperado de https://cubanaquimica.uo.edu.cu/index.php/cq/article/view/5341

Edição

Seção

Artículos