Effect of magnetic field on bioenergetic potential of Chlorella vulgaris and Dunaliella viridis

Authors

  • Liliana Gomez-Luna Centro Nacional de Electromagnetismo Aplicado, Universidad de Oriente, Santiago de Cuba, Cuba
  • Ramón Arias-Gilart Centro Nacional de Electromagnetismo Aplicado, Universidad de Oriente, Santiago de Cuba, Cuba
  • Yadenis Ortega-Díaz Centro Nacional de Electromagnetismo Aplicado, Universidad de Oriente, Santiago de Cuba, Cuba

Keywords:

Chlorella vulgaris; Chlorophyceae; campo magnético; Dunaliella salina; microalgas.

Abstract

Among the most economic and nutritional valuable microalgae, Chlorella vulgaris Beijerinck
stand out, due to its wide spectrum of applications, its protein quality and culture versatility.
Nevertheless, the halophilic microalga Dunalliella viridis, has limited applications, even when
both are biological systems with high photosynthetic efficiency and easy adaptation. This work evaluates the effect of a non-homogeneous static magnetic field (SMF) of 30 mT (applied in repeated doses) on the growth, and bioenergetic potential of cells of both species stablished in unialgal non synchronic batch cultures, in photoautotrophic conditions, with continuous light and a Photosynthetic photon flux of 75 μE m-2s-1.It was demonstrated that the static magnetic field stimulates the growth of C. vulgaris. In D. viridis it induces a senescent process, limiting the cell growth, and stimulating the lipid synthesis and cellular hydrogen production.

References

GOMEZ-LUNA, L., L. TORMOS-CEDEÑO AND Y. ORTEGA-DIAZ. Cultivo y

aplicaciones de Chlorella vulgaris: principales tendencias y potencialidades en la agricultura.

Revista Tecnología Química, 2022, 42(1), 70-93. http://scielo.sld.cu/pdf/rtq/v42n1/2224-6185-

rtq-42-01-70.pdf

AHMAD, M. T., M. SHARIFF, F. MD. YUSOFF, Y. M. GOH, et al. Applications of

microalga Chlorella vulgaris in aquaculture. Reviews in Aquaculture, 2020, 12(1), 328-346.

https://doi.org/10.1111/raq.12320

LUNA, J. J. R. Producción de biodiesel en México: Materias primas promisorias y sus

rendimientos. Naturaleza y Tecnología, 2022, 9(5), 22-42.

http://www.naturalezaytecnologia.ugto.mx/index.php/nyt/article/view/465

KANG, N. K., K. BAEK, H. G. KOH, C. A. ATKINSON, et al. Microalgal metabolic

engineering strategies for the production of fuels and chemicals. Bioresource Technology, 2022,

, 126529. https://doi.org/10.1016/j.biortech.2021.126529

GOMEZ, L. Cultivo y aplicación de las microalgas Dunaliella salina y Chlorella vulgaris en

Cuba. Tesis de Doctorado Universidad de La Coruña, 1997.

https://ruc.udc.es/dspace/bitstream/handle/2183/5592/GomezLuna_LilianaMaria_TD_1997.pdf

WANG, H.-Y., X.-B. ZENG AND S.-Y. GUO. Effects of magnetic treatment on ultrastructure

of Chlorella vulgaris. Acta Laser Biology Sinica, 2007, (4), 24-33 pag.

https://onlinelibrary.wiley.com/doi/abs/10.1002/bem.20360

WANG, H. Y., X. B. ZENG, S. &. GUO AND Z. T. LI. Effects of magnetic field on the

antioxidant defense system of recirculation-cultured Chlorella vulgaris. Bioelectromagnetics,

, 29, 39-46. doi:10.1002/bem.20360

LUO, X., ZHANG, H., LI, Q., & ZHANG, J. (2020). Effects of static magnetic field on

Chlorella vulgaris: Growth and extracellular polysaccharide (EPS) production. Journal of

Applied Phycology, 32, 2819-2828. https://doi.org/10.1007/s10811-020-02164-7

GOMEZ LUNA, L., R. D. RIVERO Y Á. INAUDIS. Cultivo de Chlorella vulgaris sobre

residual de soja con la aplicación de un campo magnético. Revista Colombiana de Biotecnología,

, XIII(2), 27-38. https://www.redalyc.org/articulo.oa?id=77621587003.

YANG, G., ET AL. Effect of magnetic field on protein and oxygen-production of Chlorella

vulgaris. Mathematical and Physical Fisheries Science, 2011, 9, 116-126.

http://jsmpfs.org/9_2011/Yang_2011.pdf

SILVEIRA-FONT, Y., L. GÓMEZ-LUNA, M. D. KUFUNDALA-WEMBA, D. SALAZAR-

HERNÁNDEZ, et al. Variación de la composición de pigmentos de Chlorella vulgaris

Beijerinck, con la aplicación del campo magnético estático. Revista Cubana de Química, 2018,

(1), 54-67. http://scielo.sld.cu/pdf/ind/v30n1/ind05118.pdf

STEPANOVA, O. A., P. V. GAISKY & S. A. SHOLAR Influence of a Constant Magnetic

Field on the Infectious Titer of Black Sea Algal Viruses. Proc. Nati. Acad. Sci. USA, 2022/04/01

, 67(2), 183-187. https://link.springer.com/article/10.1134/S000635092202021X

HUNT, R. W., A. ZAVALIN, A. BHATNAGAR, S. CHINNASAMY, et al. Electromagnetic

biostimulation of living cultures for Biotechnology, Biofuel and Bioenergy applications.

International Journal of Molecular Science, 2009, 10(11), 4719-4722.

doi:10.3390/ijms10104515

GÓMEZ, L., J. MENÉNDEZ, I. ÁLVAREZ Y I. FLORES Efecto de diferentes protocolos de

aplicación de un campo magnético (0.03T) sobre el crecimiento, viabilidad y composición

pigmentaria de Haematococcus pluvialis Flotow en suficiencia y ausencia de nitrógeno.

Biotecnología Vegetal, 2009, 9(2), 105-117.

https://revista.ibp.co.cu/index.php/BV/article/viewFile/313/287.

RYCKEBOSCH, E., K. MUYLAERT & I. FOUBERT. Optimization of an analytical

procedure for extraction of lipids from microalgae. Journal of the American Oil Chemists'

Society, 2012, 89(2), 189-198. DOI 10.1007/s11746-011-1903-z

DEAMICI, K. M., ET AL. Static magnetic fields in culture of Chlorella fusca: Bioeffects on

growth and biomass composition. Process Biochemistry, 2016, 51(7), 912-916.

https://doi.org/10.1016/j.procbio.2016.04.005

JIMÉNEZ, C., J. M. CAPASSO, C. L. EDELSTEIN, C. J. RIVARD, et al. Different ways to

die: cell death modes of the unicellular chlorophyte Dunaliella viridis exposed to various

environmental stresses are mediated by the caspase-like activity DEVDase. Journal of

Experimental Botany, 2009, 60(3), 815-828. https://doi.org/10.1093/jxb/ern330

GOMEZ LUNA, L. M., N. STEFFANIE, T. ARTOI, A. BENITEZ AMARO, et al. Cambios

fisiológicos, bioquímicos y ultraestructurales inducidos por el campo magnético en

Synechocystis aquatilis. Cumbres, 2016, 2(2), 39-48.

https://dialnet.unirioja.es/descarga/articulo/6550721.pdf

WANG, D., W. WANG, N. XU & X. SUN. Changes in growth, carbon and nitrogen enzyme

activity and mRNA accumulation in the halophilic microalga Dunaliella viridis in response to

NaCl stress. Journal of Ocean University of China, 2016, 15(6), 1094-1100.

https://link.springer.com/article/10.1007/s11802-016-2848-5

ELAHEE, K. B. & D. POINAPEN. Effects of static magnetic fields on growth of

Paramecium caudatum. Bioelectromagnetics, 2006, 27, 26-34.

https://onlinelibrary.wiley.com/doi/abs/10.1002/bem.20172

SIJIA WEI, Y. B., QI ZHAO, SIXUE CHEN, JIAWEI MAO, CHUNXIA SONG, AND Z. X.

KAI CHENG, CHUANFANG ZHANG, WEIMIN MA, HANFA ZOU, MINGLIANG YE, &

SHAOJUN DAI. Salinity-Induced Palmella Formation Mechanism in Halotolerant Algae

Dunaliella salina Revealed by Quantitative Proteomics and Phosphoproteomics. Front. Plant

Sci., Sec. Plant Proteomics and Protein Structural Biology, 2017, 8:810.

https://www.frontiersin.org/articles/10.3389/fpls.2017.00810/full

MÁRQUEZ, L. A. Efecto de las condiciones ambientales y adición de consumidores de

oxígeno sobre el crecimiento y la producción de hidrógeno en cultivos de clorofíceas. Tesis de

Doctorado. Universidad de Baja California, Colección Ciencias de la Vida, 2016. 131 pp. https://cicese.repositorioinstitucional.mx/jspui/bitstream/1007/94/1/TESIS%20LUIS%20MARQ

UEZ%2001_nov_2016.pdf

WINKLER, M., A. HEMSCHEMEIER, C. GOTOR, A. MELIS, et al. [Fe]-hydrogenases in

green algae: photo-fermentation and hydrogen evolution under sulfur deprivation. International

Journal of Hydrogen Energy, 2002, 27(11-12), 1431-1439. https://doi.org/10.1016/S0360-

(02)00095-2

KESSLER, E. Hydrogenase, photoreduction and anaerobic growth of algae. In W.D.P.

STEWART ed. Algal Physiology and Biochemistry New Jersey, EUA: Blackwel Publishing,

, p. 456-473. ISBN: 0-520-02410-9

ROSEN, A. D. Mechanism of action of moderate-intensity static magnetic fields on biological

systems. Cell Biochemistry and Biophysics, 2003, 39(2), 163-173.

https://link.springer.com/article/10.1385/CBB:39:2:163.

Published

2023-12-18

How to Cite

Gomez-Luna, L., Arias-Gilart, R., & Ortega-Díaz, Y. (2023). Effect of magnetic field on bioenergetic potential of Chlorella vulgaris and Dunaliella viridis. Revista Cubana De Química, 35(3), 480–498. Retrieved from https://cubanaquimica.uo.edu.cu/index.php/cq/article/view/5350

Issue

Section

Artículos

Most read articles by the same author(s)