Effect of magnetic field on bioenergetic potential of Chlorella vulgaris and Dunaliella viridis
Keywords:
Chlorella vulgaris; Chlorophyceae; campo magnético; Dunaliella salina; microalgas.Abstract
Among the most economic and nutritional valuable microalgae, Chlorella vulgaris Beijerinck
stand out, due to its wide spectrum of applications, its protein quality and culture versatility.
Nevertheless, the halophilic microalga Dunalliella viridis, has limited applications, even when
both are biological systems with high photosynthetic efficiency and easy adaptation. This work evaluates the effect of a non-homogeneous static magnetic field (SMF) of 30 mT (applied in repeated doses) on the growth, and bioenergetic potential of cells of both species stablished in unialgal non synchronic batch cultures, in photoautotrophic conditions, with continuous light and a Photosynthetic photon flux of 75 μE m-2s-1.It was demonstrated that the static magnetic field stimulates the growth of C. vulgaris. In D. viridis it induces a senescent process, limiting the cell growth, and stimulating the lipid synthesis and cellular hydrogen production.
References
GOMEZ-LUNA, L., L. TORMOS-CEDEÑO AND Y. ORTEGA-DIAZ. Cultivo y
aplicaciones de Chlorella vulgaris: principales tendencias y potencialidades en la agricultura.
Revista Tecnología Química, 2022, 42(1), 70-93. http://scielo.sld.cu/pdf/rtq/v42n1/2224-6185-
rtq-42-01-70.pdf
AHMAD, M. T., M. SHARIFF, F. MD. YUSOFF, Y. M. GOH, et al. Applications of
microalga Chlorella vulgaris in aquaculture. Reviews in Aquaculture, 2020, 12(1), 328-346.
https://doi.org/10.1111/raq.12320
LUNA, J. J. R. Producción de biodiesel en México: Materias primas promisorias y sus
rendimientos. Naturaleza y Tecnología, 2022, 9(5), 22-42.
http://www.naturalezaytecnologia.ugto.mx/index.php/nyt/article/view/465
KANG, N. K., K. BAEK, H. G. KOH, C. A. ATKINSON, et al. Microalgal metabolic
engineering strategies for the production of fuels and chemicals. Bioresource Technology, 2022,
, 126529. https://doi.org/10.1016/j.biortech.2021.126529
GOMEZ, L. Cultivo y aplicación de las microalgas Dunaliella salina y Chlorella vulgaris en
Cuba. Tesis de Doctorado Universidad de La Coruña, 1997.
https://ruc.udc.es/dspace/bitstream/handle/2183/5592/GomezLuna_LilianaMaria_TD_1997.pdf
WANG, H.-Y., X.-B. ZENG AND S.-Y. GUO. Effects of magnetic treatment on ultrastructure
of Chlorella vulgaris. Acta Laser Biology Sinica, 2007, (4), 24-33 pag.
https://onlinelibrary.wiley.com/doi/abs/10.1002/bem.20360
WANG, H. Y., X. B. ZENG, S. &. GUO AND Z. T. LI. Effects of magnetic field on the
antioxidant defense system of recirculation-cultured Chlorella vulgaris. Bioelectromagnetics,
, 29, 39-46. doi:10.1002/bem.20360
LUO, X., ZHANG, H., LI, Q., & ZHANG, J. (2020). Effects of static magnetic field on
Chlorella vulgaris: Growth and extracellular polysaccharide (EPS) production. Journal of
Applied Phycology, 32, 2819-2828. https://doi.org/10.1007/s10811-020-02164-7
GOMEZ LUNA, L., R. D. RIVERO Y Á. INAUDIS. Cultivo de Chlorella vulgaris sobre
residual de soja con la aplicación de un campo magnético. Revista Colombiana de Biotecnología,
, XIII(2), 27-38. https://www.redalyc.org/articulo.oa?id=77621587003.
YANG, G., ET AL. Effect of magnetic field on protein and oxygen-production of Chlorella
vulgaris. Mathematical and Physical Fisheries Science, 2011, 9, 116-126.
http://jsmpfs.org/9_2011/Yang_2011.pdf
SILVEIRA-FONT, Y., L. GÓMEZ-LUNA, M. D. KUFUNDALA-WEMBA, D. SALAZAR-
HERNÁNDEZ, et al. Variación de la composición de pigmentos de Chlorella vulgaris
Beijerinck, con la aplicación del campo magnético estático. Revista Cubana de Química, 2018,
(1), 54-67. http://scielo.sld.cu/pdf/ind/v30n1/ind05118.pdf
STEPANOVA, O. A., P. V. GAISKY & S. A. SHOLAR Influence of a Constant Magnetic
Field on the Infectious Titer of Black Sea Algal Viruses. Proc. Nati. Acad. Sci. USA, 2022/04/01
, 67(2), 183-187. https://link.springer.com/article/10.1134/S000635092202021X
HUNT, R. W., A. ZAVALIN, A. BHATNAGAR, S. CHINNASAMY, et al. Electromagnetic
biostimulation of living cultures for Biotechnology, Biofuel and Bioenergy applications.
International Journal of Molecular Science, 2009, 10(11), 4719-4722.
doi:10.3390/ijms10104515
GÓMEZ, L., J. MENÉNDEZ, I. ÁLVAREZ Y I. FLORES Efecto de diferentes protocolos de
aplicación de un campo magnético (0.03T) sobre el crecimiento, viabilidad y composición
pigmentaria de Haematococcus pluvialis Flotow en suficiencia y ausencia de nitrógeno.
Biotecnología Vegetal, 2009, 9(2), 105-117.
https://revista.ibp.co.cu/index.php/BV/article/viewFile/313/287.
RYCKEBOSCH, E., K. MUYLAERT & I. FOUBERT. Optimization of an analytical
procedure for extraction of lipids from microalgae. Journal of the American Oil Chemists'
Society, 2012, 89(2), 189-198. DOI 10.1007/s11746-011-1903-z
DEAMICI, K. M., ET AL. Static magnetic fields in culture of Chlorella fusca: Bioeffects on
growth and biomass composition. Process Biochemistry, 2016, 51(7), 912-916.
https://doi.org/10.1016/j.procbio.2016.04.005
JIMÉNEZ, C., J. M. CAPASSO, C. L. EDELSTEIN, C. J. RIVARD, et al. Different ways to
die: cell death modes of the unicellular chlorophyte Dunaliella viridis exposed to various
environmental stresses are mediated by the caspase-like activity DEVDase. Journal of
Experimental Botany, 2009, 60(3), 815-828. https://doi.org/10.1093/jxb/ern330
GOMEZ LUNA, L. M., N. STEFFANIE, T. ARTOI, A. BENITEZ AMARO, et al. Cambios
fisiológicos, bioquímicos y ultraestructurales inducidos por el campo magnético en
Synechocystis aquatilis. Cumbres, 2016, 2(2), 39-48.
https://dialnet.unirioja.es/descarga/articulo/6550721.pdf
WANG, D., W. WANG, N. XU & X. SUN. Changes in growth, carbon and nitrogen enzyme
activity and mRNA accumulation in the halophilic microalga Dunaliella viridis in response to
NaCl stress. Journal of Ocean University of China, 2016, 15(6), 1094-1100.
https://link.springer.com/article/10.1007/s11802-016-2848-5
ELAHEE, K. B. & D. POINAPEN. Effects of static magnetic fields on growth of
Paramecium caudatum. Bioelectromagnetics, 2006, 27, 26-34.
https://onlinelibrary.wiley.com/doi/abs/10.1002/bem.20172
SIJIA WEI, Y. B., QI ZHAO, SIXUE CHEN, JIAWEI MAO, CHUNXIA SONG, AND Z. X.
KAI CHENG, CHUANFANG ZHANG, WEIMIN MA, HANFA ZOU, MINGLIANG YE, &
SHAOJUN DAI. Salinity-Induced Palmella Formation Mechanism in Halotolerant Algae
Dunaliella salina Revealed by Quantitative Proteomics and Phosphoproteomics. Front. Plant
Sci., Sec. Plant Proteomics and Protein Structural Biology, 2017, 8:810.
https://www.frontiersin.org/articles/10.3389/fpls.2017.00810/full
MÁRQUEZ, L. A. Efecto de las condiciones ambientales y adición de consumidores de
oxígeno sobre el crecimiento y la producción de hidrógeno en cultivos de clorofíceas. Tesis de
Doctorado. Universidad de Baja California, Colección Ciencias de la Vida, 2016. 131 pp. https://cicese.repositorioinstitucional.mx/jspui/bitstream/1007/94/1/TESIS%20LUIS%20MARQ
UEZ%2001_nov_2016.pdf
WINKLER, M., A. HEMSCHEMEIER, C. GOTOR, A. MELIS, et al. [Fe]-hydrogenases in
green algae: photo-fermentation and hydrogen evolution under sulfur deprivation. International
Journal of Hydrogen Energy, 2002, 27(11-12), 1431-1439. https://doi.org/10.1016/S0360-
(02)00095-2
KESSLER, E. Hydrogenase, photoreduction and anaerobic growth of algae. In W.D.P.
STEWART ed. Algal Physiology and Biochemistry New Jersey, EUA: Blackwel Publishing,
, p. 456-473. ISBN: 0-520-02410-9
ROSEN, A. D. Mechanism of action of moderate-intensity static magnetic fields on biological
systems. Cell Biochemistry and Biophysics, 2003, 39(2), 163-173.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Liliana Gomez-Luna, Ramón Arias-Gilart, Yadenis Ortega-Díaz
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
This journal provides immediate open access to its content, based on the principle that offering the public free access to research helps a greater global exchange of knowledge. Each author is responsible for the content of each of their articles.