Phosphatase inhibition assay for risk detection due to contamination with microcystins in water

Authors

  • Liliana María Gómez-Luna 1 Centro Nacional de Electromagnetismo Aplicado (CNEA), Santiago de Cuba, Cuba
  • José Carlos Rodríguez-Tito CINTRO S.A., Sede Mella, Universidad de Oriente, Santiago de Cuba, Cuba
  • Narvis Cedeño-Soularit Centro de Toxicología y Biomedicina (TOXIMED), Santiago de Cuba, Cuba
  • Yadenis Ortega-Díaz Centro Nacional de Electromagnetismo Aplicado (CNEA), Santiago de Cuba, Cuba

Keywords:

cianotoxinas; fosfatasa; microcistinas; calidad del agua

Abstract

Microcystins in drinking water have been identified as a top priority on a global scale, due to their toxic
effects on human health, so the phosphatase inhibition assay was evaluated as a rapid diagnostic method
for the detection of the risk of microcystin contamination in water. The assay was performed based on the
analog modeling of the alkaline phosphatase assay. In all the cases studied, the percentage of inhibition
ranged from 65 % to 95 %, indicating that the method used is sensitive and valid for this analysis. These
results were verified by species identification, as a complementary study that confirmed the results obtained.
The proposed protocol is valid for the detection of microcystin contamination risk in water for human
consumption, showing high sensitivity.

References

GÓMEZ LUNA, L., et al. Cianobacterias: un riesgo emergente en embalses de agua de Santiago de Cuba, ed. E. Universitaria. 2011, Santiago de Cuba: Universidad de Oriente. 76 ISBN: 978-959-207-418-7.

HUISMAN, J. et al. “Cyanobacterial blooms”. Nature Reviews Microbiology, 2018. 16(8): p. 471-483 ISSN: 1740-1534.

LU, T. et al. “Pollutant toxicology with respect to microalgae and cyanobacteria”. J. Journal of Environmental Sciences, 2021. 99: p. 175-186 ISSN: 1001-0742.

RAFFOUL, M. et al. “Assessing the potential health risk of cyanobacteria and cyanotoxins in Lake Naivasha, Kenya”. J. Hydrobiologia, 2020. 847(4): p. 1041-1056 ISSN: 1573-5117.

SVIRČEV, Z. et al. “Global geographical and historical overview of cyanotoxin distribution and cyanobacterial poisonings”. Archives of Toxicology, 2019. 93(9): p. 2429-2481 ISSN: 1432-0738.

MASSEY, I. Y. et al. “A mini-review on detection methods of microcystins”. Toxins, 2020. 12(10): p. 641 ISSN: ISSN 2072-6651.

GÓMEZ, L. M.; ÁLAMO, B; RODRÍGUEZ TITO, J. C.. “Riesgo de contaminación con cianobacterias en tres embalses de agua de Santiago de Cuba”. Medisan (online), 2010. 14(2) ISSN: 1029-3019.

RODRÍGUEZ TITO, J. C. et al. “Evaluación químico analítica y microbiológica de los embalses Chalons y Parada de Santiago de Cuba”. Rev. Cubana Quím., 2017. 29(3): p. 302-307 ISSN: 2224-5421.

RODRÍGUEZ TITO, J. C.; GÓMEZ L., L. M. “Estado trófico de 24 embalses de agua en el oriente de Cuba”. Revista Cubana de Química, 2020. 32(1): p. 136-153 ISSN: 2224-5421.

TITO, J. C. R. et al. “First Report on Microcystin-LR Occurrence in Water Reservoirs of Eastern Cuba, and Environmental” Trigger Factors. Toxins, 2022. 14(3): p. 209 ISSN: 2072-6651.

BESSEY, O. A.; LOWRY, O. H.; BROCK, M. J. “A method for the rapid determination of alkaline phosphates with five cubic millimeters of serum”. Journal of Biological Chemistry, 1946. 164: p. 321-9.

Norma Cubana. “Agua Potable-Requisitos sanitarios”, in NC:8272012, Oficina Nacional de Normalización, La Habana, Cuba.

Norma Cubana. “Higiene comunal ― fuentes de abastecimiento de agua ― calidad y protección sanitaria”, in NC:10212014, Oficina Nacional de Normalización, La Habana, Cuba.

GUIRY, M.; GUIRY, G. AlgaeBase. World-wide electronic publication. Galway: National University of Ireland, 2014. http://www.algaebase.org, revisado diciembre 2023.

GUIRY, M. D.; GUIRY, G. M. AlgaeBase. Synechocystis Sauvageau, 1892: cxv, in World-wide electronic publication 2014, National University of Ireland: Galway. http://www.algaebase.org, visitado diciembre 2023.

WHO. Guidelines for Drinking-water Quality, 2017, 4th Edition, p. 1-631, ISBN: 97 8-92-4-155001-7.

GIANI, A. et al. “Comparing key drivers of cyanobacteria biomass in temperate and tropical systems”. J. Harmful Algae, 2020. 97: p. 101859 ISSN: 1568-9883.

CHORUS, I. Current approaches to Cyanotoxin risk assessment, risk management and regulations in different countries. Federal Environment Agency, Germany, 2012. 63: p 1-147.

SUDHAKARAN, S.; LATTEMANN, S.; AMY, G. L. “Appropriate drinking water treatment processes for organic micropollutants removal based on experimental and model studies—a multi-criteria analysis study”. Science of the Total Environment, 2013. 442: p. 478-488, ISSN:0048-9697.

BARROS, M. U. G. et al. “Environmental factors associated with toxic cyanobacterial blooms across 20 drinking water reservoirs in a semi-arid region of Brazil”. Harmful Algae, 2019(86): p. 128–137 ISSN: 1878-1470.

BRITO, M. T. S.; DUARTE NETO, P. J.; MOLICA, R. J. R.. “Cylindrospermopsis raciborskii and Microcystis aeruginosa competing under different conditions of pH and inorganic carbon”. Hydrobiologia, 2018(815): p. 253–266 ISSN: 0018-8158.

GÓMEZ, S. C.; DE CORRAL, A. Q. Catálogo de cianobacterias planctónicas potencialmente tóxicas de las aguas continentales españolas. 2011: Ministerio de Medio Ambiente y Medio Rural y Marino, Secretaria General Técnica, Centro de Publicaciones, España, 1ra Edicion, ISBN: 978-84-491-1072-6.

CHORUS, I.; J. BARTRAM. Toxic cyanobacteria in water: A guide to their public health consequences, monitoring and management. ed. F.F. Spon. Vol. 30. 1999, WHO: London and New York. 211-234 ISBN: 0-419-23930-8.

Published

2024-12-11

How to Cite

Gómez-Luna, L. M., Rodríguez-Tito, J. C., Cedeño-Soularit, N., & Ortega-Díaz, Y. (2024). Phosphatase inhibition assay for risk detection due to contamination with microcystins in water. Revista Cubana De Química, 36(1), 47–56. Retrieved from https://cubanaquimica.uo.edu.cu/index.php/cq/article/view/5365

Issue

Section

Artículos