Thiourea derivatives as receptors in Pb(II) sensors: theoretical and experimental description

Authors

Keywords:

1-aroylthioureas-3,3-disubstituted; Pb(II) ion selective electrodes; DFT calculations; MFO; global reactivity parameters.

Abstract

Thiourea derivatives have been used as receptors in the development of selective electrodes to metallic ions (ISEs). Among the receptors used in the construction of ISEs to Pb(II) ions are: 1benzoyl-3,3-dimethylthiourea (1), 1-(2-furoyl)-3,3-dimethylthiourea (2) and 1-(2-thiophenyl)3,3-dimethylthiourea (3). Although, there are several analytical studies on the performance of those sensors, the development of theoretical models is important to elucidate the differences observed in their response. In this work, the density functional B3LYP and the 6-311G (d, p) basis set was used to calculate the geometry, the electronic structure, the IR spectra, the energies of the HOMO-LUMO orbitals and the global reactivity parameters of these molecules. The calculated parameters were related with those of the analytical response characteristics for the constructed sensors. A good correspondence between theoretical and experimental parameters was found and could be established the order of reactivity: (3)> (1) ≈ (2) for the studied receptors.

References

1. SAEED, A.; et al. “Current developments in chemistry, coordination, structure and biological aspects of 1-(acyl/aroyl)-3-(substituted) thioureas: advances Continue”, Journal of Sulfur Chemistry. 2019, 40 (3), 312-350. ISSN: 1741-5993
2. FRAGA, A. R. L.; et al. “Could N-(diethylcarbamothioyl)benzamide be a good ionophore for sensor membranes?”, Journal of Molecular Structure. 2010, 981 (1-3), 86-92. ISSN: 0022-2860
3. VILTRES-PORTALES, M. Nuevos electrodos selectivos a iones Pb(II) basados en aroiltioureas 3,3-dimetilsustituidas. Tesis de Maestría, IMRE-Universidad de La Habana, Cuba, 2019. Disponible en: www.uh.cu. (consultado: 28-8-2020)
4. PÉREZ, H.; et al. “N-Benzoyl-N′,N′-dimethylthiourea”, Acta Crystallographica Section E: Structure Reports Online. 2011, 67 (3), o647-o647. ISSN: 1600-5368
5. CAIRO, R. R.; et al. “Understanding the conformational changes and molecular structure of furoyl thioureas upon substitution”, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2017, 176, 8-17. ISSN: 1386-1425
6. SAEED, S.; et al. “Synthesis, spectroscopic characterization, crystal structure and pharmacological properties of some novel thiophene‐ thiourea core derivatives”, European Journal of Chemistry. 2010, 1 (3), 221-227. ISSN: 2153-2257
7. GEERLINGS, P.; DE PROFT, F.; LANGENAEKER, W. “Conceptual density functional theory”, Chemical reviews. 2003, 103 (5), 1793-1874. ISSN: 0009-2665
8. CASTRO, M.; et al. “Theoretical study of the Hg2+ recognition by 1,3-diphenyl-thiourea”, The Journal of Physical Chemistry A. 2003, 107 (42), 9000-9007. ISSN: 1089-5639
9. GIL, D. M.; et al. “Quantum chemical studies on molecular structure, spectroscopic (IR, Raman, UV–Vis), NBO and Homo–Lumo analysis of 1-benzyl-3-(2-furoyl) thiourea”, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2015, 145, 553-562. ISSN: 1386-1425
10. LESTARD, M. E. D.; et al. “Structural, vibrational and electronic characterization of 1benzyl-3-furoyl-1-phenylthiourea: an experimental and theoretical study”, New Journal of Chemistry. 2015, 39 (9), 7459-7471. ISSN: 1369-9261
11. PLUTÍN, A. M.; et al. “Alkylation of benzoyl and furoylthioureas as polydentate systems”, Tetrahedron. 2000, 56 (11), 1533-1539. ISSN: 0040-4020
12. LIMA, J. L. F. C.; MACHADO, A. A. S. C. “Procedure for the construction of all-solid-state PVC membrane electrodes”, Analyst. 1986, 111 (7), 799-802.ISSN: 1364-5528
13. LAZO-FRAGA, A. R.; et al. “Evaluación de diferentes aroiltioureas como ionóforos en sensores de plomo (II)”, Revista Cubana de Química. 2015, 27 (3), 262-274. ISSN: 2224-5421
14. BUCK, R. P.; LINDNER, E. “Recommendations for nomenclature of ion selective electrodes (IUPAC Recommendations 1994)”, Pure and Applied Chemistry. 1994, 66 (12), 2527-2536. ISSN: 1365-3075
15. UMEZAWA, Y.; UMEZAWA, K.; SATO, H. “Selectivity coefficients for ion-elective
electrodes: Recommended methods for reporting values (Technical Report) ”, Pure and
Applied Chemistry. 1995, 67 (3), 507-518. ISSN: 1365-3075
16. BECKE, A. D. “Density‐ functional thermochemistry. I. The effect of the exchange‐ only gradient correction”, The Journal of Chemical Physics. 1992, 96 (3), 2155-2160. ISSN: 00219606
17. LEE, C.; YANG, W.; PARR, R. G. “Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density”, Physical review B. 1988, 37 (2), 785.ISSN: 1098-0121
18. WOLDU, M. G.; DILLEN, J., “A quantum mechanical study of the stability and structural properties of substituted acylthiourea compounds”, Theoretical Chemistry Accounts, 2008, 121 (1-2), 71–82. ISSN: 1432-2232
19. FRISCH, M. J. et al. Gaussian 09, D.01, Gaussian, Inc., Wallingford CT (2013).
20. EL-AZHARY, A. A.; SUTER, H. U. “Comparison between optimized geometries and vibrational frequencies calculated by the DFT methods”, The Journal of Physical Chemistry. 1996, 100 (37), 15056-15063. ISSN: 0022-3654
21. FRAGA, A. R. L.; et al. “Structures and properties in different media of N,N(diethylcarbamothioyl)furan-2-carboxamide: A ionophore for sensor membranes”, Journal of Molecular Structure. 2009, 929 (1-3), 174-181. ISSN: 0022-2860
22. SUNDARAGANESAN, N.; et al. “Comparison of experimental and ab initio HF and DFT vibrational spectra of benzimidazole”, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2007, 67, 628-635. ISSN: 1386-1425
23. YOSHIDA, H.; et al. “A new approach to vibrational analysis of large molecules by density functional theory: wavenumber-linear scaling method”, The Journal of Physical Chemistry A. 2002, 106 (14), 3580-3586. ISSN: 1089-5639
24. SAEED, A.; FLÖRKE, U.; ERBEN, M. F. “A review on the chemistry, coordination, structure and biological properties of 1-(acyl/aroyl)-3-(substituted) thioureas”, Journal of Sulfur Chemistry. 2014, 35 (3), 318-355. ISSN: 1741-5993
25. LIN-VIEN, D.; et al. The handbook of infrared and Raman characteristic frequencies of organic molecules. Edición Reino Unido, Londres: Academic Press, 1991. ISBN: 0080571166
26. ESTÉVEZ-HERNÁNDEZ, O.; et al. “A Raman and infrared study of 1-furoyl-3monosubstituted and 3, 3-disubstituted thioureas”, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2005, 62 (4-5), 964-971. ISSN: 1386-1425
27. NATARAJ, A.; BALACHANDRAN, V.; KARTHICK, T. “Molecular structure, vibrational spectra, first hyperpolarizability and HOMO–LUMO analysis of p-acetylbenzonitrile using quantum chemical calculation”, Journal of Molecular Structure. 2013, 1038, 134-144. ISSN: 0022-2860
28. RUIZ-MORALES, Y. “HOMO− LUMO gap as an index of molecular size and structure for polycyclic aromatic hydrocarbons (PAHs) and asphaltenes: A theoretical study. I”, The Journal of Physical Chemistry A. 2002, 106 (46), 11283-11308. ISSN: 1089-5639
29. ARMSTRONG, R. D.; HORVAI, G. “Properties of PVC based membranes used in ionselective electrodes”, Electrochimica Acta. 1990, 35 (1), 1-7. ISSN: 1873-3859

Published

2021-04-26

How to Cite

Bustamante-Sánchez, M., Lazo-Fraga, A. R., Viltres-Portales, M., González-Quintela, M., Sánchez-Díaz, G., Díaz-García, A., & Estévez-Hernández, O. (2021). Thiourea derivatives as receptors in Pb(II) sensors: theoretical and experimental description. Revista Cubana De Química, 33(2), 91–112. Retrieved from https://cubanaquimica.uo.edu.cu/index.php/cq/article/view/5178

Most read articles by the same author(s)