Nanoparticles of Gd2O3 pegylated and conjugated to amylovis with potential application in the detection of alzheimer by MRI

Authors

  • Julio Ricardo Rodríguez-Izquierdo Laboratorio de Bioinorgánica Departamento de Química General e Inorgánica, Facultad de Química, Universidad de La Habana, La Habana, Cuba https://orcid.org/0000-0002-6813-9928
  • Armando Augusto Paneque-Quevedo Laboratorio de Bioinorgánica Departamento de Química General e Inorgánica, Facultad de Química, Universidad de La Habana, La Habana, Cuba https://orcid.org/0000-0002-1527-8174
  • Marquiza Sablón-Carrazana Departamento de Neuroquímica, Centro de Neurociencias de Cuba https://orcid.org/0000-0002-4053-8302
  • Chryslaine Rodríguez-Tanty Departamento de Neuroquímica, Centro de Neurociencias de Cuba https://orcid.org/0000-0002-3958-183X
  • Alicia Díaz-García Laboratorio de Bioinorgánica Departamento de Química General e Inorgánica, Facultad de Química, Universidad de La Habana, La Habana, Cuba https://orcid.org/0000-0002-1527-8174
  • Evelio González-Dalmau Departamento de Resonancia Magnética, Centro de Neurociencias de Cuba https://orcid.org/0000-0003-4569-2103

Keywords:

alzheimer disease; contrast agent; nanoparticles; gadolinium oxide; MRI.

Abstract

Specific contrast agents facilitate the use of Magnetic Resonance Imaging (MRI) in the early diagnosis of Alzheimer's disease (AD). In the present work, a procedure for the synthesis of a potential MRI contrast agent based on PEGylated Gd2O3 particles is developed for conjugation to Amylovis®, a family of compounds that has shown a high affinity for the pathological structures present in AD. The products obtained were characterized by FT-IR, ICP, TGA, DLS and SEM. Amylovis-functionalized Gd2O3 particles showed a spherical morphology, with an average hydrodynamic diameter of 2.5 μm. These particles presented an adequate value of the ratio between the longitudinal (r1) and transversal (r2) relaxivities (r2/r1 = 2.4). This suggests that once these particles have a hydrodynamic diameter smaller than 200 nm, they could be used as a potential contrast agent for MRI.

References

SÁNCHEZ-MÁRQUEZ, N. I., BILBAO-FUENTES, D. B. “Dinámica familiar de pacientes con enfermedad de Alzheimer antes y después del inicio de la enfermedad”. Pensando Psicología. 2018, 14(24). ISSN 2382-3984

AZRIA, D.; BLANQUER, S.; VERDIER, J.M.; BELAMIE, E. “Nanoparticles as contrast agents for brain nuclear magnetic resonance imaging in Alzheimer's disease diagnosis”. Journal of Materials Chemistry B. 2017, 5(35), 7216-7237. ISSN 2050-7518

HAJIPOUR, M. J. et al. “Advances in alzheimer’s diagnosis and therapy: The implications of nanotechnology”. Trends in biotechnology. 2017, 35 (10), 937953. ISSN: 0167-7799

RASTOGI, N.; TYAGI, N.; SINGH, O.; KUMAR, B. S. H.; ROY, R. “Mn(II) based T1 and T2 potential MRI contrast agent appended with tryptamine: Recognition moiety for Aβ-plaques”. Journal of Inorganic Biochemistry. 2017, 177, 76-81. ISSN: 0162-0134

MATHARU, B.; SPENCER, N.; HOWE, F.; AUSTEN, B. “Gadolinium complexed Aβ-binding contrast agents for MRI diagnosis of Alzheimer's Disease”. Neuropeptides. 2015, 53, 63-70. ISSN: 0143-4179

COURANT, T.; ROULLIN, G. V.; CADIOU, C.; CALLEWAERT, M. et al. “Biocompatible nanoparticles and gadolinium complexes for MRI applications”. Comptes Rendus Chimie. 2013, 16 (6), 531-539. ISSN: 1631-0748

CARRASCO, S.; CALLES, C.; FERNÁNDEZ, C.; LAFUENTE, J. “Contrastes basados en gadolinio utilizados en resonancia magnética”. Radiología. 2014, 56, 21-28. ISSN: 0033-8338

WANG, C. et al. “Amyloid‐β Oligomer‐Targeted Gadolinium‐Based NIR/MR Dual‐Modal Theranostic Nanoprobe for Alzheimer's Disease”. Advanced Functional Materials. 2020, 30 (16), 1909529. ISSN: 1616-3028

TELGMANN, L.; SPERLING, M.; KARST, U. “Determination of gadolinium based MRI contrast agents in biological and environmental samples: A review”. Analytica Chimica Acta. 2013, 764, 1-16. ISSN: 0003-2670

SABLÓN-CARRAZANA, M. et al. “Drug Development in Conformational Diseases: A Novel Family of Chemical Chaperones that Bind and Stabilise Several Polymorphic Amyloid Structures”. PLOS ONE. 2015, 10 (9):e0135292 ISSN: 1932-6203

SALERNO, M.; PORQUERAS, D. S. D. “Alzheimer's disease: The use of contrast agents for magnetic resonance imaging to detect amyloid beta peptide inside the brain”. Coordination Chemistry Reviews. 2016, (15), 27-34. ISSN: 0010-8545

ZHANG, C. et al. “Dual-functional nanoparticles targeting amyloid plaques in the brains of Alzheimer's disease mice”. Biomaterials. 2014, 35 (1), 456-465. ISSN: 0142-9612

MANCINI, S. et al. “The hunt for brain Aβ oligomers by peripherally circulating multi-functional nanoparticles: Potential therapeutic approach for Alzheimer disease”. Nanomedicine: Nanotechnology, Biology and Medicine. 2016, 12 (1), 43-52. ISSN: 1549-9642

FERNÁNDEZ-GÓMEZ, I. et al. “Diabetes Drug Discovery: hIAPP1–37 Polymorphic Amyloid Structures as Novel Therapeutic Targets”. Molecules. 2018, 23, 686. ISSN: 1420-3049.

RIVERA-MARRERO, S. et al. “[18F] Amylovis as a Potential PET Probe for β-Amyloid Plaque: Synthesis, In Silico, In vitro and In vivo Evaluations”. Curr Radiopharm. 2019, 12(1), 58-71. ISSN: 1874-4710

MARRERO-RIVERA, S. et al. “A new naphthalene derivative with anti-amyloidogenic activity as potential therapeutic agent for Alzheimer's disease”. Bioorganic & Medicinal Chemistry. 2020, 28 (20), 115-700. ISSN 0968-0896

GAYATHRI, T.; SUNDARAM, N. M.; KUMAR, R. A. “Gadolinium Oxide Nanoparticles for Magnetic Resonance Imaging and Cancer Theranostics”. Journal of Bionanoscience. 2015, 9 (6), 409-423. ISSN: 1557-7910

AHRÉN, M. et al. “A simple polyol-free synthesis route to Gd2O3 nanoparticles for MRI applications: an experimental and theoretical study”. Journal of Nanoparticle Research. 2012, 14 (8), 1006. ISSN: 1388-0764

NAKAMOTO, K., “Infrared and Raman Spectra of Inorganic and Coordination Compounds”. Part B: Applications in Coordination, Organometallic, and Bioinorganic Chemistry. John Wiley & Sons, Inc. ed.; Wiley. 2009. ISSN: 978-0-471-74493-1

AGHAZADEH, M. “Preparation of Gd2O3 Ultrafine Nanoparticles by Pulse Electrodeposition Followed by Heat-treatment Method”. Journal of Ultrafine Grained and Nanostructured Materials. 2016, 49 (2), 80-86. ISSN: 2423-6845

AHMAD, M. et al. “Bovine serum albumin (BSA) and cleaved-BSA conjugated ultrasmall Gd2O3 nanoparticles: Synthesis, characterization, and application to MRI contrast agents”. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2014, 450, 67-75. ISSN: 0927-7757

RIYAHI-ALAM, S.; HAGHGOO, S.; GORJI, E.; RIYAHI-ALAM, N. “Size reproducibility of gadolinium oxide based nanomagnetic particles for cellular magnetic resonance imaging: effects of functionalization, chemisorption and reaction conditions”. Iranian journal of pharmaceutical research: IJPR. 2015, 14 (1), 3. ISSN: 1735-0328

Published

2021-04-26

How to Cite

Rodríguez-Izquierdo, J. R., Paneque-Quevedo, A. A., Sablón-Carrazana, M., Rodríguez-Tanty, C., Díaz-García, A., & González-Dalmau, E. (2021). Nanoparticles of Gd2O3 pegylated and conjugated to amylovis with potential application in the detection of alzheimer by MRI. Revista Cubana De Química, 33(2), 3–22. Retrieved from https://cubanaquimica.uo.edu.cu/index.php/cq/article/view/3-22

Most read articles by the same author(s)