Caracterización química del bio-aceite de pirólisis rápida de biomasa

Autores/as

  • Roberto Alfonso Viltres-Rodríguez Departamento de Química, Facultad de Ciencias Agropecuarias, Universidad de Granma Granma, Cuba
  • Alejandro Alarcón-Zayas Departamento de Química, Facultad de Ciencias Agropecuarias, Universidad de Granma Granma, Cuba

Palabras clave:

Capín de Elefante; paja de caña de azúcar; pirólisis rápida; bio-aceite; cromatografía gaseosa.

Resumen

La biomasa de procesos agrícolas es un importante recurso para la pirólisis rápida y su transformación en bio-aceite y productos de alto valor agregado. Para la caracterización físico-química de la biomasa y el bio-aceite, se emplearon varias normas de la Sociedad Americana para Pruebas y Materiales (SAPM). Se obtuvieron muestras representativas de bio-aceite 0,82 t; ácido piroleñoso 0,18 t; gases no condensables 0,25 t; carbón 0,42 t; por pirólisis rápida de la mezcla de Capín de Elefante (Pennisetum purpureum) con paja de caña de azúcar (Saccharum officinarum). Se identificaron por cromatografía gaseosa con detector de masa en dos fracciones del bio-aceite, 93 compuestos orgánicos pertenecientes a los ácidos carboxílicos, fenoles, derivados del furano, éteres de la lignina, una serie homóloga de n-alcanos de alta masa molar y algunos compuestos aromáticos nitrogenados. El poder calórico del bio-aceite es de 20,20 MJ kg-1, facilitando su posible uso como bio-combustible.

Citas

SHANHUI, Z.; YONGHAO, L. “Multiscale Modeling of Lignocellulosic Biomass Thermochemical Conversion Technology: An Overview on the State-of-the-Art”. Energy & Fuels. 2020, 34 (10), 11867-11886. ISSN: 1520-5029.

PAVLO, K.; BROADBELT, L. J. “Progress in Modeling of Biomass Fast Pyrolysis: A Review”. Energy & Fuels. 2020. ISSN: 1520-5029.

XUE-YU, R. et al. “Catalytic Conversion of Coal and Biomass Volatiles: A Review”. Energy & Fuels. 2020, 34 (9), 10307-10363. ISSN: 1520-5029.

CHAO, L. et al. “Impact of Acidic/Basic Sites of the Catalyst on Properties of the Coke Formed in Pyrolysis of Guaiacol: A Model Compound of the Phenolics in Bio-oil”. Energy & Fuels. 2020, 34 (9), 11026-11040. ISSN: 1520-5029.

LEN-MARTÍNEZ, T. S. et al. “Paja de la caña de azúcar. Sus usos en la actualidad. ICIDCA”. Sobre los Derivados de la Caña de Azúcar. 2013, 47(2), 13-22. ISSN: 1025-3076.

AZAD, T. et al. “Model Lignin Oligomer Pyrolysis: Coupled Conformational and Thermodynamic Analysis of β-O-4′ Bond Cleavage”. Energy & Fuels. 2020, 34(8), 9709-9724. ISSN: 1520-5029.

MALIEKKAL, V.; DAUENHAUER, P. J; NEUROCK, M. “Glycosidic C–O Bond Activation in Cellulose Pyrolysis: Alpha versus Beta and Condensed Phase Hydroxyl-Catalytic Scission”. ACS Catalysis. 2020, 10(15), 8454-8464. ISSN: 2155-5435.

CHUN, H. L. et al. “Minireview on Bio-Oil Upgrading via Electrocatalytic Hydrogenation: Connecting Biofuel Production with Renewable Power”. Energy & Fuels. 2020, 34(7), 7915-7928. ISSN: 1520-5029.

SHUMEIKO, B. et al. “Efficient One-Stage Bio-Oil Upgrading over Sulfided Catalysts”. ACS Sustainable Chemistry & Engineering. 2020, 8(40), 15149-15167. ISSN: 2168-0485.

STAŠ, M. et al. “Petroleomic Characterization of Pyrolysis Bio-oils: A Review”. Energy & Fuels 2017, 31 (10), 10283-10299. ISSN: 1520-5029.

SUOTA, M. J. et al. “Esterification, Distillation, and Chemical Characterization of Bio-Oil and Its Fractions”. Energy & Fuels. 2019, 33(10), 9886-9894. ISSN: 1520-5029.

XUEYONG, R.; JIN GUO, J.; LI, S.; CHANG, J. “Thermogravimetric Analysis–Fourier Transform Infrared Spectroscopy Study on the Effect of Extraction Pretreatment on the Pyrolysis Properties of Eucalyptus Wood Waste”. ACS Omega. 2020, 5(36), 23364-23371. ISSN: 2470-1343.

SHUN-FENG, J.; GUO-PING, S.; HONG, J. “Advances in the Characterization Methods of Biomass Pyrolysis Products”. ACS Sustainable Chemistry & Engineering. 2019, 7(15), 12639-12655. ISSN: 2168-0485.

VOLPE, R.; ZABANIOTOU, A. A.; SKOULOU, V. “Synergistic Effects between Lignin and Cellulose during Pyrolysis of Agricultural Waste”. Energy & Fuels. 2018, 32(8), 8420-8430. ISSN: 1520-5029.

STAŠ, M. et al. “Petroleomic Characterization of Pyrolysis Bio-oils: A Review”. Energy & Fuels. 2017, 31(10), 10283-10299. ISSN: 1520-5029.

ZHENG, A. et al. “Toward Fast Pyrolysis-Based Biorefinery: Selective Production of Platform Chemicals from Biomass by Organosolv Fractionation Coupled with Fast Pyrolysis”. ACS Sustainable Chemistry & Engineering. 2017, 5 (8) , 6507-6516. ISSN: 2168-0485.

ASTM D591-92. “Standard Test Method for Instrumental Determination of Carbon, Hydrogen, and Nitrogen in petroleum and lubricants”. Easton, MD: American Society for Testing and Materials.

ASTM D1762-84. “Standard Test Method for Chemical Analysis of Wood Charcoal”. Easton, MD: American Society for Testing and Materials.

GARCÍA-PÉREZ, M.; CHAALA, A.; ROY, C. “Vacuum pyrolysis of sugarcane bagasse”. Journal of Analytical and Applied Pyrolysis. 2002, 65, 111–136. ISSN: 01652370.

OASMAA, C.; PEACOKE, A. “Guide to physical property characterization of biomass- derived fast pyrolysis liquids, VTT Energy, Espoo, Finland”. Publication 450. 2001. p.65, app.34. ISBN:951-38-6365-4.

ASTM D1744-88. Standard Test Method for water in liquid petroleum products by Karl Fischer reagent. Easton, MD: American Society for Testing and Materials.

ASTM D445-88. Standard Test Method for kinematic density viscosity of transparent and opague liquids (and the calculation of dynamic viscosity). Easton, MD: American Society for Testing and Materials.

ASTM D4052-88. Standard Test Method for density and relative of liquids by digital density meter. Easton, MD: American Society for Testing and Materials.

DIN 51900-77. Testing of solid and liquid fuels; determination of gross calorific value by bomb calorimeter and calculation of net calorific value; method with the adiabatic jacket. Berlin: DIN (Deutsches Institut für Nomung), Germany.

DEMIRAL, I.; AYAN, E. A. “Pyrolysis of grape bagasse: effect of pyrolysis conditions on the product yields and characterization of the liquid product”. Bioresource Technology. 2011, 102, 3946-3951. ISSN: 0960-8524.

DEMIRBAS, A. “Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues”. Journal of Analytical and Applied Pyrolysis. 2004, 72, 243-248. ISSN: 01652370.

ASADULLAH, M. et al. “Production of bio-oil from fixed bed pyrolysis of bagasse”. Fuel. 2007, 86, 2514-2520. ISSN: 2292-8782.

FERRELL, J. R. et al. “Standardization of chemical analytical techniques for pyrolysis bio-oil: history, challenges, and current status of methods”. Biofuels, Bioproducts and Biorefining. 2016, 10 (5), 496-507. ISSN: 1932-1031.

CZERNIK, S.; BRIDGWATER, A.V. “Overview of applications of biomass fast pyrolysis oil”. Energy & Fuels. 2004, 18, 590-598. ISSN 1520-5029.

GREWAL, A.; LORD ABBEY, L.; RAO-GUNUPURU, L. “Production, prospects and potential application of pyroligneous acid in agriculture”. Journal of Analytical and Applied Pyrolysis. 2018, 135, 152–159. DOI: 01652370.

Descargas

Publicado

2022-01-03

Cómo citar

Viltres-Rodríguez, R. A. ., & Alarcón-Zayas, A. . (2022). Caracterización química del bio-aceite de pirólisis rápida de biomasa. Revista Cubana De Química, 34(1), 131–158. Recuperado a partir de https://cubanaquimica.uo.edu.cu/index.php/cq/article/view/5212

Número

Sección

Artículos

Artículos más leídos del mismo autor/a