EVALUACIÓN DE LA VISCOSIDAD EN DISOLUCIONES DE HEMOGLOBINA HUMANA: UNA REVISIÓN

Autores/as

  • Néstor J. Rodríguez-de la-Cruz Escuela de Física. Facultad de Ciencias. Universidad Autónoma de Santo Domingo. Zona Universitaria, Distrito Nacional, Santo Domingo, República Dominicana
  • Claudia C. García-Cruz Centro de Biofísica Médica. Universidad de Oriente, Santiago de Cuba, Cuba
  • Yamirka Alonso-Geli Centro de Biofísica Médica. Universidad de Oriente, Santiago de Cuba, Cuba
  • Yulianela Mengana-Torres Centro de Biofísica Médica. Universidad de Oriente, Santiago de Cuba, Cuba
  • Manuel A. Lores-Guevara Centro de Biofísica Médica. Universidad de Oriente, Santiago de Cuba, Cuba

Palabras clave:

viscosidad; hemoglobina; glóbulos rojos; EPR; NMR.

Resumen

RESUMEN
La viscosidad de la hemoglobina humana es un parámetro novedoso para evaluar clínicamente patologías que modifican la reología sanguínea. En este trabajo de revisión se analizan sus valores en disoluciones de concentración cercana a la intracelular y suspensiones de glóbulos rojos, así como los fundamentos teóricos y métodos experimentales utilizados en su determinación, para crear referencias útiles en el desarrollo de nuevas aplicaciones médicas o en el empleo de las existentes. Se incluyen determinaciones realizadas con viscosimetría (capilar, rotacional, “cuerpo
descendente”), resonancia paramagnética electrónica (RPE) y resonancia magnética nuclear (RMN). Los métodos más adecuados para evaluar la viscosidad en disoluciones de hemoglobina son la viscosimetría (6 mPa.s, 37 °C) y la relajación magnética nuclear (11 mPa.s, 20 °C). La RPE y los restantes métodos basados en RMN estiman valores de micro-viscosidad (1,5 mPa.s-2,0 mPa s) que pueden corregirse para obtener la viscosidad de la disolución.

Citas

Valerio-de arruda, M. et al. “Etandarization for

obtaining blood viscosity: a systematic review”,

European Journal of Hematology. 2021, 106(5), 597

ISSN: 0902-4441

https://doi.org/10.1111/ejh.13594

Huamaní, C. et al. “Importancia de la medición de

la viscosidad sanguínea: retos y limitaciones”, Acta

Médica del Peru. 2023, 40(2), 161-166. ISSN: 1728

http://dx.doi.org/10.35663/amp.2023.402.2398

Abbasian, M. et al. “Effects of different non

newtonian models on unsteady blood flow

hemodynamics in patient-specific arterial models with

in-vivo validation”, Computer Methods and Programs

in Biomedicine. 2020, 186, 105-185. ISSN: 1872

https://doi.org/10.1016/j.cmpb.2019.105185

Popel, A. S.; Johnson, P. C. “Microcirculation and

hemorheology”, Annu. Rev. Fluid. Mech. 2005, 37,

-69. ISSN: 0066-4189

https://doi.org/10.1146/annurev.fluid.37.042604.1339

Ciancaglini, C. “Hidrodinamia de la circulación

vascular periférica normal y patológica”, Revista

Costarricense de Cardiología. 2004, 6(2), 43-61.

ISSN: 1409-4142.

Blanco-Santos, Y.; Areces-López, A.; Gámez

Pérez, A. “Síndrome de hiperviscosidad: características fisiopatológicas y clínicas”, Revista

Científico Estudiantil de la Universidad de Ciencias

Médicas de la Habana. 2020, 59(278), e840. ISSN:

-6935.

Gertz, M. A. “Acute hyperviscosity: síndromes and

management”, Blood. 2018, 132(13), 1379-1385.

ISSN: 0006-4971 https://doi.org/10.1182/blood-2018

-46816

Celik, T. et al. “Whole blood viscosity and

cardivascular diseases: a forgotten old player of the

game”, Medical Principles and Practice. 2016, 25(5),

-500. ISSN: 1011-7571

https://doi.org/10.1159/000446916

Cekirdekci, E. I.; Bugan, B. “Whole blood viscosity

in microvascular angina and coronary artery disease:

significance and utility”, Rev. Port. Cardiol. 2020,

(1), 17-23. ISSN: 2174-2049

https://doi.org/10.1016/j.repc.2019.04.008

Furukawa, K. et al. “Increased blood viscosity in

ischemic stroke patients with small artery occlusion

measured by an electromagnetic spinning sphere

viscometer”, J. Stroke Cerebrovasc. Dis. 2016,

(11), 2762-2769. ISSN: 1052-3057

https://doi.org/10.1016/j.jstrokecerebrovasdis.2016.07

.031

Song, S. H. et al. “Elevated blood viscosity is

associated with cerebral small vessel disease in

patients with acute ischemic stroke”, BMC Neurol.

, 17(1), 20. ISSN: 1471-2377

https://doi.org/10.1186/s12883-017-0808-3

Huamaní, C. et al. “Prediction of blood viscosity

based on usual hematological parameters in a

clinically healthy population living in a high-altitude

city”, High Alt. Med. Biol. 2021, 23(1), 78-84. ISSN:

-8682 https://doi.org/10.1089/ham.2021.0165

Sloop, G. et al. “The role of blood viscosity in

infectious diseases”, Cureus. 2020, 12(2), e7090.

ISSN: 2168-8184 https://doi.org/10.7759/cureus.7090

Chen, G. et al. “Regulation of blood viscosity in

disease prevention and treatment”, Chin. Sci. Bull.

, 57, 1946-1952. ISSN: 0023-074X

https://doi.org/10.1007/s11434-012-5165-4

Jiehui, S. et al. “Blood viscosity in subjects with

type 2 Diabetes Mellitus: roles of hyperglycemia and

elevated plasma fibrinogen”, Front. Physiol. 2022, 13,

ISSN: 1664-042X

https://doi.org/10.3389./phys.2022.827428

Kucukal, E. et al. “Whole blood viscosity and red

blood cell adhesion: potential biomarkers for targeted

and curative therapies in sickle cell disease”, Am. J.

Hematol. 2020, 95(11), 1246-1256. ISSN: 1096-8652

https://doi.org/10.1002/ajh.25933

Ajayi, O. I.; Famodu, A. A.; Oviasu, E.

“Fibrinogen concentration: a marker of cardiovascular

disorders in nigerians”, Turk. J. Haematol. 2007,

(1), 18-22. ISSN: 1308-5263.

Lores-Guevara, M. A. et al. “Plasma dynamic

viscosity determined by NMR”, Applied Magnetic

Resonance. 2018, 49(10), 1075-1083. ISSN: 1613

https://doi.or/10.1007/s00723-018-1026

Mengana-Torres, Y. et al. “Dynamic viscosity of

blood serum determined using proton magnetic

relaxation”, Applied Magnetic Resonance. 2024,

(5), 527-536. ISSN: 1613-7507

https://doi.org./10.1007./s00723-024-01644-0

Szabó, E.; Baka, E. Z.; Tamás, K. “Shear rate

induced viscosity change of human blood samples and

blood mimicking fluids”, Acta of bioengineering and

biomechanics. 2024, 26(1), 99-107. ISSN: 1509-409X

https://doi.org/10.37190/abb-02405-2024-03

Malomuzh N. P. et al. “Characteristic changes in

the density and shear viscosity of human blood

plasma with varying protein concentration”.

Ukrainian Journal of Physics. 2020, 2, 151. ISSN:

-400X https://doi.org/10.15407/ujpe65.2.151

Nader, E. et al. “Blood rheology: key parameters,

impact on blood flow, role in sickle cell disease and

effects of exercise”, Frontiers in physiology. 2019,

, 1329. ISSN: 1664-042X

https://doi.org/10.3389/fphys.2019.01329

Trejo-Soto, C.; Hernández-Machado, A.; Mussi,

V. “Normalization of blood viscosity according to the

hematocrit and the shear rate”, Micromachines

(Basel). 2022, 13(3), 357. ISSN: 2072-666X.

https://doi.org/10.3390/mi13030357

Rosencranz, R.; Bogen, S. A. “Clinical laboratory

measurement of serum, plasma and blood viscosity”,

Pathology Patterns Reviews. 2006, 125(Suppl 1),

S78-S86. ISSN: 1542-2305

https://doi.org/10.1309/FFF7U8RRPK26VAPY

Hund, S. J.; Kameneva, M. V.; Antaki, J. F. “A

quasi-mechanical mathematical representation for

blood viscosity”, Fluids. 2017, 2(1), 10. ISSN: 2311

https://doi.org/10.3390/fluids2010010

Sirs, J. A. “Erythrocyte Flexibility and Whole

blood Viscosity”. In: Lowe, G.D.O.; Barbenel, J.C.;

Forbes, C.D. (eds). Clinical aspects of blood viscosity

and cell deformability. London: Springer, 1981.

ISBN: 9781447131052, https://doi.org/10.1007/978

-4471-3105-2_2

Carallo, I. C. et al. “The effect of HDL cholesterol

on blood and plasma viscosity in healthy subjects”,

Clinical hemorheology and microcirculation. 2013,

(2), 223-229. ISSN: 1386-0291

https://doi.org/10.3233/CH-2012-1624

Carallo, I. C. et al. “Influence of blood lipids on

plasma and blood viscosity”, Clinical hemorheology

and microcirculation. 2014. 57(3), 267-274. ISSN:

-0291 https://doi.org/10.3233/CH-131705

Briole, A.; Podgorski, T.; Abou, B. “Molecular

rotors as intracellular probes of red blood cell

stiffness”, Soft Matter. 2021, 17, 4525. ISSN:1744

X https://doi.org/10.1039/d1sm00321f.hal

v2

Mehri, R.; Mavriplis, C; Fenech, M. “Red blood

cell aggregates and their effect on non-newtonian

blood viscosity at low hematocrit in a two-fluid low

shear rate microfluidic system”, Plos One. 2018, 3(7),

e0199911. ISSN: 1932-6203

https://doi.org/10.1371/journal.pone.0199911

Glenn, A.; Catherine, E.; Armonstrong, E.

“Physiology of red and white blood cells”,

Anaesthesia and Intensive Care Medicine. 2019,

(3), 170-174. ISSN: 1472-0299

https://doi.org/10.1016/j.mpaic.2019.01.001

Endre, Z. H.; Kuchel, P. W. “Viscosity of

concentrated solutions and of human erythrocyte

cytoplasm determined from NMR measurement of

molecular correlation times. The dependence of

viscosity on cell volume”, Biophysical Chemistry.

, 24, 337-356. ISSN: 1873-4200

https://doi.org/10.1016/0301-4622(86)85039-6

Monkos, K. “Viscometric study of human, bovine,

equine and ovine haemoglobin in aqueous solution”,

International journal of biological macromolecules.

, 16(1), 31-35. ISSN: 0141-8130

https://doi.org/10.1016/0141-8130(94)90008-6

Lores-Guevara, M. A. et al. “EPR study of the

hemoglobin rotational correlation time and

microviscosity during the polymerization of

hemoglobin S”, Applied Magnetic Resonance. 2006,

(1), 121-128. ISSN: 1613-7507

https://doi.org/10.1007/BF03166986

Rodríguez-de la Cruz, N. J. et al. “Dynamic

viscosity of hemoglobin solutions determined by

transverse proton magnetic relaxation”, Hemoglobin.

, 49(3), 172-177. ISSN: 0363-0269

https://doi.org/10.1080/03630269.2025.2493949

Lores-Guevara, M. A. Aplicaciones médicas de la

Relajación Magnética Nuclear. 1era Edición. Santiago

de Cuba: Ediciones Universidad de Oriente, 2023.

ISBN: 978-959-207-731-7

Mengana-Torres, Y et al. “Determination of

dynamic viscosity in samples of blood plasma and

hemoglobin solution using nuclear magnetic

resonance”, International Journal of Biochemistry,

Biophysics & Molecular Biology. 2019, 4(2), 25-30.

ISSN: 2575-5889

https://doi.org/10.116480.11648/ijbbmb.20190402.12

Cabal-MIRABAL, C. et al. “Assessment of

contribution of curie-spin mechanism in proton

relaxation during aggregation process of hemoglobin

S”, Applied Magnetic Resonance. 2020, 51 (12),

-1652. ISSN: 1613-7507

https://doi.org/10.1007/s00723-020-01241-x

Mengana-Torres, Y. et al. “Procedimiento

experimental para determinar la viscosidad dinámica

utilizando la velocidad de relajación protónica”,

Revista Cubana de Química. 2024, 36(3). e-ISSN:

-5421.

Cabal-Mirabal, C. A. et al. “Kinetics studies of

complex biomedical process by magnetic resonance.

cuban experiences”, Applied Magnetic Resonance.

, 49(6), 589-598. ISSN: 1613-7507

https://doi.org/10.1007/s00723-018-0985-2

Lores- Guevara, M. A.; García-Naranjo, J. C.;

Cabal-Mirabal, C. A. “MR relaxation studies of

hemoglobin aggregation process in sickle cell disease:

application for diagnostics and therapeutics”, Applied

Magnetic Resonance. 2019, 50(4), 541-551. ISSN:

-7507 https://doi.org/10.1007/s00723-018-1104

Lores-Guevara, M. A. et al. “Proton MRD profile

analysis in intracellular hemoglobin solutions: a three

sites exchange model approach”, Applied Magnetic

Resonance. 2022, 53, 387-399. ISSN: 1613-7507

https://doi.org/10.1007/s00723-021-01452-w

Lores-Guevara, M. A. et al. “Estudio de la anemia

drepanocítica empleando resonancia magnética:

potenciales aplicaciones médicas”, An. Acad. Cienc.

Cuba. 2025, 15(1), e2896. ISSN: 2304-0106

http://www.revistaccuba.cu/index.php/revacc/article/v

iew/2896

Endre, Z. H.; Chapman, B. E.; Kuchel, P. W.

“Intra-erythrocyte microviscosity and diffusion of

specifically labelled [glycyl-alpha-13C] glutathione by

using 13C NMR”, Biochemical Journal. 1983, 216(3),

-660. ISSN: 0264-6021

https://doi.org/10.1042/bj2160655

Lores-Guevara, M. A. et al. “Nuevo método para

determinar la viscosidad en plasma sanguíneo y solución de hemoglobina”, Rev. Cubana Hematol.

Lnmunol. Hemoter. 2018, 33(S1). ISSN: 1561-2996

https://revhematologia.sld.cu/index.php/hih/artcle/ve

w/652

Buniak K. “Fast field cycling relaxometry:

application of hemoglobin solutions using the Three

Tau Model”. Master Thesis Dissertation on Medical

Physics. University of Surrey, 2024.

Menzel, F. et al. “Communication versus

waterproofing: the physics of insect cuticular

hydrocarbons”, The Journal of experimental biology.

, 222, jeb210807. ISSN: 0022-0949 https://doi.org/10.1242/jeb.210807

Mauer, J. et al. “Flow-induced transitions of red

blood cell shapes under shear”, Phys. Rev. Lett. 2018, 121,

ISSN:

-7114

https://doi.org/10.1103/PhysRevLett.121.118103

Minetti, C. et al. “Dynamics of a large population

of red blood cells under shear flow”, Journal of Fluid

Mechanics. 2019, 864, 408-448. ISSN: 0022-1120

https://doi.org/10.1017/jfm.2019.42

Losserand, S.; Coupier, G.; Podgorski, T.

“Migration velocity of red blood cells in

microchannels”, Microvascular research. 2019, 124,

-36.

ISSN:

-2862

https://doi.org/10.1016/j.mvr.2019.02.003

Shen, Z. et al. “Inversion of hematocrit partition at

microfluidic bifurcations”, Microvascular research.

, 105, 40-46. ISSN: https://doi.org/10.1016/j.mvr.2015.12.009

Descargas

Publicado

2026-01-19

Cómo citar

Rodríguez-de la-Cruz, N. J., García-Cruz, C. C., Alonso-Geli, Y., Mengana-Torres, Y., & Lores-Guevara, M. A. (2026). EVALUACIÓN DE LA VISCOSIDAD EN DISOLUCIONES DE HEMOGLOBINA HUMANA: UNA REVISIÓN . Revista Cubana De Química, 37(1), 93–106. Recuperado a partir de https://cubanaquimica.uo.edu.cu/index.php/cq/article/view/5445

Número

Sección

Artículos

Artículos más leídos del mismo autor/a