Molecular docking of pseudopeptidic imidazoles as selective inhibitors against CYP51 enzyme

Authors

  • Yonatan Mederos-Nuñez Department of Chemistry, Natural and Exact Sciences Faculty, Universidad de Oriente, Santiago de Cuba, Cuba
  • Armando Ferrer-Serrano Department of Chemistry, Natural and Exact Sciences Faculty, Universidad de Oriente, Santiago de Cuba, Cuba
  • Raidel Rosales-Rosabal Department of Chemistry, Natural and Exact Sciences Faculty, Universidad de Oriente, Santiago de Cuba, Cuba
  • Rebeca Joa-Acree Department of Chemistry, Natural and Exact Sciences Faculty, Universidad de Oriente, Santiago de Cuba, Cuba
  • América García-López Department of Chemistry, Natural and Exact Sciences Faculty, Universidad de Oriente, Santiago de Cuba, Cuba

Keywords:

molecular docking; CYP51; pseudopeptide imidazoles; selectivity coefficient.

Abstract

P450 family, especially CYP51 protein, is a common target for the design of antifungal and antiprotozoal drugs. Designing new effective drugs against these pathogens is a necessity and a challenge for the scientific community. To this end, they are evaluated by molecular docking of five schemes of aryl-substituted imidazoles and pseudopeptic imidazoles against CYP51 proteins from different pathogens and against the similar human protein to estimate their selectivity. Once these calculations have been carried
out, none of the compounds studied appears to be an effective inhibitor against CYP51-L.infantum. However, for all the remaining proteins lower normalized coupling scores
are obtained, fundamentally for schemes 1 and 3. Given the geometry of the protein-linked complexes formed, schemes 2 and 4 appear to be more selective than schemes 1, 3 and 5. However, the highest estimated selectivity values are obtained for schemes 1 and 3 against CYP51-C.glabrata and for scheme 1 against CYP51-N.fowleri. In general, the direct relationship between the stability of the protein-ligated complex with the direct interaction of the ligand with the Fe2+ cation of the heme group, which provides
stability to the union.

References

LEPESHEVA, G. I. AND M. R. WATERMAN "CYP51—the omnipotent P450".

Molecular and cellular endocrinology, 2004, 215(1-2), 165-170.

https://doi.org/10.1016/j.mce.2003.11.016.

LEPESHEVA, G. I., T. Y. HARGROVE, Y. KLESHCHENKO, W. D. NES, et al.

"CYP51: A major drug target in the cytochrome P450 superfamily". Lipids, 2008,

(12), 1117-1125. https://doi.org/10.1007/s11745-008-3225-y.

CHOI, J. Y., L. M. PODUST AND W. R. ROUSH "Drug strategies targeting CYP51

in neglected tropical diseases". Chemical Reviews, 2014, 114(22), 11242-11271.

https://doi.org/10.1021/cr5003134.

HARGROVE, T. Y., K. KIM, M. D. N. C. SOEIRO, C. F. DA SILVA, et al. "CYP51

structures and structure-based development of novel, pathogen-specific inhibitory

scaffolds". International Journal for Parasitology: Drugs and Drug Resistance, 2012,

, 178-186. https://doi.org/10.1016/j.ijpddr.2012.06.001.

WARRILOW, A. G., C. L. PRICE, J. E. PARKER, N. J. ROLLEY, et al. "Azole

antifungal sensitivity of sterol 14α-demethylase (CYP51) and CYP5218 from

Malassezia globosa". Scientific reports, 2016, 6(1), 1-10.

https://doi.org/10.1038/srep27690.

ZHANG, J., L. LI, Q. LV, L. YAN, et al. "The fungal CYP51s: Their functions,

structures, related drug resistance, and inhibitors". Frontiers in microbiology, 2019, 10,

https://doi.org/10.3389/fmicb.2019.00691.

ZHANG, H.-Z., L.-L. GAN, H. WANG AND C.-H. ZHOU "New progress in azole

compounds as antimicrobial agents". Mini reviews in medicinal chemistry, 2017, 17(2),

-166. https://doi.org/10.2174/1389557516666160630120725.

WARRILOW, A. G., J. E. PARKER, C. L. PRICE, E. P. GARVEY, et al. "The

tetrazole VT-1161 is a potent inhibitor of Trichophyton rubrum through its inhibition of

T. rubrum CYP51". Antimicrobial agents and chemotherapy, 2017, 61(7), e00333-

https://doi.org/10.1128/aac.00333-17.

VERMA, A. K., A. MAJID, M. HOSSAIN, S. AHMED, et al. "Identification of 1, 2,

-triazine and its derivatives against Lanosterol 14-demethylase (CYP51) property of

Candida albicans: Influence on the development of new antifungal therapeutic

strategies". Frontiers in medical technology, 2022, 16.

https://doi.org/10.3389/fmedt.2022.845322.

DOYLE, P. S., C.-K. CHEN, J. B. JOHNSTON, S. D. HOPKINS, et al. "A

nonazole CYP51 inhibitor cures Chagas’ disease in a mouse model of acute infection".

Antimicrobial agents and chemotherapy, 2010, 54(6), 2480-2488.

https://doi.org/10.1128/aac.00281-10.

HASSAN, E. A., I. A. SHEHADI, A. M. ELMAGHRABY, H. M. MOSTAFA, et

al. "Synthesis, molecular docking analysis and in vitro biological evaluation of some

new heterocyclic scaffolds-based indole moiety as possible antimicrobial agents".

Frontiers in molecular biosciences, 2022, 1238.

https://doi.org/10.3389/fmolb.2021.775013.

COTUÁ, J., H. LLINÁS AND S. COTES "Virtual Screening Based on QSAR and

Molecular Docking of Possible Inhibitors Targeting Chagas CYP51". Journal of

Chemistry, 2021, 2021. https://doi.org/10.1155/2021/6640624

WARRILOW, A. G., J. E. PARKER, D. E. KELLY AND S. L. KELLY "Azole

affinity of sterol 14α-demethylase (CYP51) enzymes from Candida albicans and Homo

sapiens". Antimicrobial agents and chemotherapy, 2013, 57(3), 1352-1360.

https://doi.org/10.1128/aac.02067-12.

IRANNEJAD, H., S. EMAMI, H. MIRZAEI AND S. M. HASHEMI "In silico

prediction of ATTAF-1 and ATTAF-2 selectivity towards human/fungal lanosterol 14α-

demethylase using molecular dynamic simulation and docking approaches". Informatics

in Medicine Unlocked, 2020, 20, 100366. https://doi.org/10.1016/j.imu.2020.100366.

BERMAN, H. M., T. BATTISTUZ, T. N. BHAT, W. F. BLUHM, et al. "The

protein data bank". Acta Crystallographica Section D: Biological Crystallography,

, 58(6), 899-907. https://doi.org/10.1107/S0907444902003451.

O'BOYLE, N. M., M. BANCK, C. A. JAMES, C. MORLEY, et al. "Open Babel:

An open chemical toolbox". Journal of cheminformatics, 2011, 3(1), 1-14.

https://doi.org/10.1186/1758-2946-3-33.

PETTERSEN, E. F., T. D. GODDARD, C. C. HUANG, G. S. COUCH, et al.

"UCSF Chimera—a visualization system for exploratory research and analysis".

Journal of computational chemistry, 2004, 25(13), 1605-1612.

https://doi.org/10.1002/jcc.20084.

SOLIS-VASQUEZ, L., A. F. TILLACK, D. SANTOS-MARTINS, A. KOCH, et al.

"Benchmarking the performance of irregular computations in AutoDock-GPU

molecular docking". Parallel Computing, 2022, 109, 102861.

https://doi.org/10.1016/j.parco.2021.102861.

LASKOWSKI, R. A. AND M. B. SWINDELLS. LigPlot+: multiple ligand–protein

interaction diagrams for drug discovery. In.: ACS Publications, 2011.

https://doi.org/10.1021/ci200227u.

DA SILVA, J. K. R., P. L. B. FIGUEIREDO, K. G. BYLER AND W. N. SETZER

"Essential oils as antiviral agents, potential of essential oils to treat SARS-CoV-2

infection: An in-silico investigation". International journal of molecular sciences,

, 21(10), 3426. https://doi.org/10.3390/ijms21103426.

BELL, E. W. AND Y. ZHANG "DockRMSD: an open-source tool for atom

mapping and RMSD calculation of symmetric molecules through graph isomorphism".

Journal of cheminformatics, 2019, 11(1), 1-9. https://doi.org/10.1186/s13321-019-

-7.

ARBA, M., S. IHSAN AND D. H. TJAHJONO "In silico study of porphyrin-

anthraquinone hybrids as CDK2 inhibitor". Computational Biology and Chemistry,

, 67, 9-14. https://doi.org/10.1016/j.compbiolchem.2016.12.005.

VARGAS, J. A. R., A. G. LOPEZ, M. C. PIÑOL AND M. FROEYEN "Molecular

docking study on the interaction between 2-substituted-4, 5-difuryl Imidazoles with

different Protein Target for antileishmanial activity". Journal of Applied

Pharmaceutical Science, 2018, 8(3), 014-022.

http://dx.doi.org/10.7324/JAPS.2018.8303.

HEVENER, K. E., W. ZHAO, D. M. BALL, K. BABAOGLU, et al. "Validation of

Molecular Docking Programs for Virtual Screening against Dihydropteroate Synthase".

J Chem Inf Model, 2009, 49(2), 444-460. https://doi.org/10.1021/ci800293n.

ZINAD, D. S., A. MAHAL, S. SISWODIHARDJO, M. R. F. PRATAMA, et al.

"3D-Molecular Modeling, Antibacterial Activity and Molecular Docking Studies of

Some Imidazole Derivatives". Egyptian Journal of Chemistry, 2021, 64(1), 93-105.

https://dx.doi.org/10.21608/ejchem.2020.31043.2662.

Published

2023-12-18

How to Cite

Mederos-Nuñez, Y., Ferrer-Serrano, A., Rosales-Rosabal, R., Joa-Acree, R., & García-López, A. (2023). Molecular docking of pseudopeptidic imidazoles as selective inhibitors against CYP51 enzyme. Revista Cubana De Química, 35(3), 368–395. Retrieved from https://cubanaquimica.uo.edu.cu/index.php/cq/article/view/5342

Issue

Section

Artículos

Most read articles by the same author(s)