Molecular docking of pseudopeptidic imidazoles as selective inhibitors against CYP51 enzyme
Keywords:
molecular docking; CYP51; pseudopeptide imidazoles; selectivity coefficient.Abstract
P450 family, especially CYP51 protein, is a common target for the design of antifungal and antiprotozoal drugs. Designing new effective drugs against these pathogens is a necessity and a challenge for the scientific community. To this end, they are evaluated by molecular docking of five schemes of aryl-substituted imidazoles and pseudopeptic imidazoles against CYP51 proteins from different pathogens and against the similar human protein to estimate their selectivity. Once these calculations have been carried
out, none of the compounds studied appears to be an effective inhibitor against CYP51-L.infantum. However, for all the remaining proteins lower normalized coupling scores
are obtained, fundamentally for schemes 1 and 3. Given the geometry of the protein-linked complexes formed, schemes 2 and 4 appear to be more selective than schemes 1, 3 and 5. However, the highest estimated selectivity values are obtained for schemes 1 and 3 against CYP51-C.glabrata and for scheme 1 against CYP51-N.fowleri. In general, the direct relationship between the stability of the protein-ligated complex with the direct interaction of the ligand with the Fe2+ cation of the heme group, which provides
stability to the union.
References
LEPESHEVA, G. I. AND M. R. WATERMAN "CYP51—the omnipotent P450".
Molecular and cellular endocrinology, 2004, 215(1-2), 165-170.
https://doi.org/10.1016/j.mce.2003.11.016.
LEPESHEVA, G. I., T. Y. HARGROVE, Y. KLESHCHENKO, W. D. NES, et al.
"CYP51: A major drug target in the cytochrome P450 superfamily". Lipids, 2008,
(12), 1117-1125. https://doi.org/10.1007/s11745-008-3225-y.
CHOI, J. Y., L. M. PODUST AND W. R. ROUSH "Drug strategies targeting CYP51
in neglected tropical diseases". Chemical Reviews, 2014, 114(22), 11242-11271.
https://doi.org/10.1021/cr5003134.
HARGROVE, T. Y., K. KIM, M. D. N. C. SOEIRO, C. F. DA SILVA, et al. "CYP51
structures and structure-based development of novel, pathogen-specific inhibitory
scaffolds". International Journal for Parasitology: Drugs and Drug Resistance, 2012,
, 178-186. https://doi.org/10.1016/j.ijpddr.2012.06.001.
WARRILOW, A. G., C. L. PRICE, J. E. PARKER, N. J. ROLLEY, et al. "Azole
antifungal sensitivity of sterol 14α-demethylase (CYP51) and CYP5218 from
Malassezia globosa". Scientific reports, 2016, 6(1), 1-10.
https://doi.org/10.1038/srep27690.
ZHANG, J., L. LI, Q. LV, L. YAN, et al. "The fungal CYP51s: Their functions,
structures, related drug resistance, and inhibitors". Frontiers in microbiology, 2019, 10,
https://doi.org/10.3389/fmicb.2019.00691.
ZHANG, H.-Z., L.-L. GAN, H. WANG AND C.-H. ZHOU "New progress in azole
compounds as antimicrobial agents". Mini reviews in medicinal chemistry, 2017, 17(2),
-166. https://doi.org/10.2174/1389557516666160630120725.
WARRILOW, A. G., J. E. PARKER, C. L. PRICE, E. P. GARVEY, et al. "The
tetrazole VT-1161 is a potent inhibitor of Trichophyton rubrum through its inhibition of
T. rubrum CYP51". Antimicrobial agents and chemotherapy, 2017, 61(7), e00333-
https://doi.org/10.1128/aac.00333-17.
VERMA, A. K., A. MAJID, M. HOSSAIN, S. AHMED, et al. "Identification of 1, 2,
-triazine and its derivatives against Lanosterol 14-demethylase (CYP51) property of
Candida albicans: Influence on the development of new antifungal therapeutic
strategies". Frontiers in medical technology, 2022, 16.
https://doi.org/10.3389/fmedt.2022.845322.
DOYLE, P. S., C.-K. CHEN, J. B. JOHNSTON, S. D. HOPKINS, et al. "A
nonazole CYP51 inhibitor cures Chagas’ disease in a mouse model of acute infection".
Antimicrobial agents and chemotherapy, 2010, 54(6), 2480-2488.
https://doi.org/10.1128/aac.00281-10.
HASSAN, E. A., I. A. SHEHADI, A. M. ELMAGHRABY, H. M. MOSTAFA, et
al. "Synthesis, molecular docking analysis and in vitro biological evaluation of some
new heterocyclic scaffolds-based indole moiety as possible antimicrobial agents".
Frontiers in molecular biosciences, 2022, 1238.
https://doi.org/10.3389/fmolb.2021.775013.
COTUÁ, J., H. LLINÁS AND S. COTES "Virtual Screening Based on QSAR and
Molecular Docking of Possible Inhibitors Targeting Chagas CYP51". Journal of
Chemistry, 2021, 2021. https://doi.org/10.1155/2021/6640624
WARRILOW, A. G., J. E. PARKER, D. E. KELLY AND S. L. KELLY "Azole
affinity of sterol 14α-demethylase (CYP51) enzymes from Candida albicans and Homo
sapiens". Antimicrobial agents and chemotherapy, 2013, 57(3), 1352-1360.
https://doi.org/10.1128/aac.02067-12.
IRANNEJAD, H., S. EMAMI, H. MIRZAEI AND S. M. HASHEMI "In silico
prediction of ATTAF-1 and ATTAF-2 selectivity towards human/fungal lanosterol 14α-
demethylase using molecular dynamic simulation and docking approaches". Informatics
in Medicine Unlocked, 2020, 20, 100366. https://doi.org/10.1016/j.imu.2020.100366.
BERMAN, H. M., T. BATTISTUZ, T. N. BHAT, W. F. BLUHM, et al. "The
protein data bank". Acta Crystallographica Section D: Biological Crystallography,
, 58(6), 899-907. https://doi.org/10.1107/S0907444902003451.
O'BOYLE, N. M., M. BANCK, C. A. JAMES, C. MORLEY, et al. "Open Babel:
An open chemical toolbox". Journal of cheminformatics, 2011, 3(1), 1-14.
https://doi.org/10.1186/1758-2946-3-33.
PETTERSEN, E. F., T. D. GODDARD, C. C. HUANG, G. S. COUCH, et al.
"UCSF Chimera—a visualization system for exploratory research and analysis".
Journal of computational chemistry, 2004, 25(13), 1605-1612.
https://doi.org/10.1002/jcc.20084.
SOLIS-VASQUEZ, L., A. F. TILLACK, D. SANTOS-MARTINS, A. KOCH, et al.
"Benchmarking the performance of irregular computations in AutoDock-GPU
molecular docking". Parallel Computing, 2022, 109, 102861.
https://doi.org/10.1016/j.parco.2021.102861.
LASKOWSKI, R. A. AND M. B. SWINDELLS. LigPlot+: multiple ligand–protein
interaction diagrams for drug discovery. In.: ACS Publications, 2011.
https://doi.org/10.1021/ci200227u.
DA SILVA, J. K. R., P. L. B. FIGUEIREDO, K. G. BYLER AND W. N. SETZER
"Essential oils as antiviral agents, potential of essential oils to treat SARS-CoV-2
infection: An in-silico investigation". International journal of molecular sciences,
, 21(10), 3426. https://doi.org/10.3390/ijms21103426.
BELL, E. W. AND Y. ZHANG "DockRMSD: an open-source tool for atom
mapping and RMSD calculation of symmetric molecules through graph isomorphism".
Journal of cheminformatics, 2019, 11(1), 1-9. https://doi.org/10.1186/s13321-019-
-7.
ARBA, M., S. IHSAN AND D. H. TJAHJONO "In silico study of porphyrin-
anthraquinone hybrids as CDK2 inhibitor". Computational Biology and Chemistry,
, 67, 9-14. https://doi.org/10.1016/j.compbiolchem.2016.12.005.
VARGAS, J. A. R., A. G. LOPEZ, M. C. PIÑOL AND M. FROEYEN "Molecular
docking study on the interaction between 2-substituted-4, 5-difuryl Imidazoles with
different Protein Target for antileishmanial activity". Journal of Applied
Pharmaceutical Science, 2018, 8(3), 014-022.
http://dx.doi.org/10.7324/JAPS.2018.8303.
HEVENER, K. E., W. ZHAO, D. M. BALL, K. BABAOGLU, et al. "Validation of
Molecular Docking Programs for Virtual Screening against Dihydropteroate Synthase".
J Chem Inf Model, 2009, 49(2), 444-460. https://doi.org/10.1021/ci800293n.
ZINAD, D. S., A. MAHAL, S. SISWODIHARDJO, M. R. F. PRATAMA, et al.
"3D-Molecular Modeling, Antibacterial Activity and Molecular Docking Studies of
Some Imidazole Derivatives". Egyptian Journal of Chemistry, 2021, 64(1), 93-105.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Yonatan Mederos-Nuñez, Armando Ferrer-Serrano, Raidel Rosales-Rosabal, Rebeca Joa-Acree, América García-López
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
This journal provides immediate open access to its content, based on the principle that offering the public free access to research helps a greater global exchange of knowledge. Each author is responsible for the content of each of their articles.