Acoplamiento molecular de imidazoles psudopeptídicos como inhibidores selectivos contra la enzima CYP51

Autores/as

  • Yonatan Mederos-Nuñez Department of Chemistry, Natural and Exact Sciences Faculty, Universidad de Oriente, Santiago de Cuba, Cuba
  • Armando Ferrer-Serrano Department of Chemistry, Natural and Exact Sciences Faculty, Universidad de Oriente, Santiago de Cuba, Cuba
  • Raidel Rosales-Rosabal Department of Chemistry, Natural and Exact Sciences Faculty, Universidad de Oriente, Santiago de Cuba, Cuba
  • Rebeca Joa-Acree Department of Chemistry, Natural and Exact Sciences Faculty, Universidad de Oriente, Santiago de Cuba, Cuba
  • América García-López Department of Chemistry, Natural and Exact Sciences Faculty, Universidad de Oriente, Santiago de Cuba, Cuba

Palabras clave:

acoplamiento molecular; CYP51, imidazoles pseudopeptídicos; índice de selectividad.

Resumen

La familia P450, y en especial la proteína CYP51, es blanco común para el diseño de fármacos antimicóticos y antiprotozoarios. Diseñar nuevos fármacos efectivos contra
estos patógenos es una necesidad y un reto para la comunidad científica. Con este objetivo se evalúan mediante acoplamiento molecular de cinco esquemas de imidazoles arilsustituidos e imidazoles pseudopeptídicos contra proteínas CYP51 de distintos patógenos y contra la similar proteína humana para estimar su selectividad. Una vez
realizado estos cálculos se arriba a que ninguno de los compuestos estudiados parece ser un inhibidor efectivo contra CYP51-L.infantum. Sin embargo, para todas las restantes proteínas se obtienen menores puntuaciones normalizadas del acoplamiento, fundamentalmente para los esquemas 1 y 3. Dada la geometría de los complejos
proteína-ligado formados los esquemas 2 y 4 se muestran más selectivos que los esquemas 1, 3 y 5. Sin embargo, los mayores valores de selectividad estimada se obtienen para los esquemas 1 y 3 contra CYP51-C.glabrata y para el esquema 1 contra CYP51-N.fowleri. De manera general, se constata la relación directa entre la estabilidad del complejo proteína-ligado con la interacción directa del ligando con catión Fe2+ del grupo heme, la cual aporta estabilidad a la unión.

Citas

LEPESHEVA, G. I. AND M. R. WATERMAN "CYP51—the omnipotent P450".

Molecular and cellular endocrinology, 2004, 215(1-2), 165-170.

https://doi.org/10.1016/j.mce.2003.11.016.

LEPESHEVA, G. I., T. Y. HARGROVE, Y. KLESHCHENKO, W. D. NES, et al.

"CYP51: A major drug target in the cytochrome P450 superfamily". Lipids, 2008,

(12), 1117-1125. https://doi.org/10.1007/s11745-008-3225-y.

CHOI, J. Y., L. M. PODUST AND W. R. ROUSH "Drug strategies targeting CYP51

in neglected tropical diseases". Chemical Reviews, 2014, 114(22), 11242-11271.

https://doi.org/10.1021/cr5003134.

HARGROVE, T. Y., K. KIM, M. D. N. C. SOEIRO, C. F. DA SILVA, et al. "CYP51

structures and structure-based development of novel, pathogen-specific inhibitory

scaffolds". International Journal for Parasitology: Drugs and Drug Resistance, 2012,

, 178-186. https://doi.org/10.1016/j.ijpddr.2012.06.001.

WARRILOW, A. G., C. L. PRICE, J. E. PARKER, N. J. ROLLEY, et al. "Azole

antifungal sensitivity of sterol 14α-demethylase (CYP51) and CYP5218 from

Malassezia globosa". Scientific reports, 2016, 6(1), 1-10.

https://doi.org/10.1038/srep27690.

ZHANG, J., L. LI, Q. LV, L. YAN, et al. "The fungal CYP51s: Their functions,

structures, related drug resistance, and inhibitors". Frontiers in microbiology, 2019, 10,

https://doi.org/10.3389/fmicb.2019.00691.

ZHANG, H.-Z., L.-L. GAN, H. WANG AND C.-H. ZHOU "New progress in azole

compounds as antimicrobial agents". Mini reviews in medicinal chemistry, 2017, 17(2),

-166. https://doi.org/10.2174/1389557516666160630120725.

WARRILOW, A. G., J. E. PARKER, C. L. PRICE, E. P. GARVEY, et al. "The

tetrazole VT-1161 is a potent inhibitor of Trichophyton rubrum through its inhibition of

T. rubrum CYP51". Antimicrobial agents and chemotherapy, 2017, 61(7), e00333-

https://doi.org/10.1128/aac.00333-17.

VERMA, A. K., A. MAJID, M. HOSSAIN, S. AHMED, et al. "Identification of 1, 2,

-triazine and its derivatives against Lanosterol 14-demethylase (CYP51) property of

Candida albicans: Influence on the development of new antifungal therapeutic

strategies". Frontiers in medical technology, 2022, 16.

https://doi.org/10.3389/fmedt.2022.845322.

DOYLE, P. S., C.-K. CHEN, J. B. JOHNSTON, S. D. HOPKINS, et al. "A

nonazole CYP51 inhibitor cures Chagas’ disease in a mouse model of acute infection".

Antimicrobial agents and chemotherapy, 2010, 54(6), 2480-2488.

https://doi.org/10.1128/aac.00281-10.

HASSAN, E. A., I. A. SHEHADI, A. M. ELMAGHRABY, H. M. MOSTAFA, et

al. "Synthesis, molecular docking analysis and in vitro biological evaluation of some

new heterocyclic scaffolds-based indole moiety as possible antimicrobial agents".

Frontiers in molecular biosciences, 2022, 1238.

https://doi.org/10.3389/fmolb.2021.775013.

COTUÁ, J., H. LLINÁS AND S. COTES "Virtual Screening Based on QSAR and

Molecular Docking of Possible Inhibitors Targeting Chagas CYP51". Journal of

Chemistry, 2021, 2021. https://doi.org/10.1155/2021/6640624

WARRILOW, A. G., J. E. PARKER, D. E. KELLY AND S. L. KELLY "Azole

affinity of sterol 14α-demethylase (CYP51) enzymes from Candida albicans and Homo

sapiens". Antimicrobial agents and chemotherapy, 2013, 57(3), 1352-1360.

https://doi.org/10.1128/aac.02067-12.

IRANNEJAD, H., S. EMAMI, H. MIRZAEI AND S. M. HASHEMI "In silico

prediction of ATTAF-1 and ATTAF-2 selectivity towards human/fungal lanosterol 14α-

demethylase using molecular dynamic simulation and docking approaches". Informatics

in Medicine Unlocked, 2020, 20, 100366. https://doi.org/10.1016/j.imu.2020.100366.

BERMAN, H. M., T. BATTISTUZ, T. N. BHAT, W. F. BLUHM, et al. "The

protein data bank". Acta Crystallographica Section D: Biological Crystallography,

, 58(6), 899-907. https://doi.org/10.1107/S0907444902003451.

O'BOYLE, N. M., M. BANCK, C. A. JAMES, C. MORLEY, et al. "Open Babel:

An open chemical toolbox". Journal of cheminformatics, 2011, 3(1), 1-14.

https://doi.org/10.1186/1758-2946-3-33.

PETTERSEN, E. F., T. D. GODDARD, C. C. HUANG, G. S. COUCH, et al.

"UCSF Chimera—a visualization system for exploratory research and analysis".

Journal of computational chemistry, 2004, 25(13), 1605-1612.

https://doi.org/10.1002/jcc.20084.

SOLIS-VASQUEZ, L., A. F. TILLACK, D. SANTOS-MARTINS, A. KOCH, et al.

"Benchmarking the performance of irregular computations in AutoDock-GPU

molecular docking". Parallel Computing, 2022, 109, 102861.

https://doi.org/10.1016/j.parco.2021.102861.

LASKOWSKI, R. A. AND M. B. SWINDELLS. LigPlot+: multiple ligand–protein

interaction diagrams for drug discovery. In.: ACS Publications, 2011.

https://doi.org/10.1021/ci200227u.

DA SILVA, J. K. R., P. L. B. FIGUEIREDO, K. G. BYLER AND W. N. SETZER

"Essential oils as antiviral agents, potential of essential oils to treat SARS-CoV-2

infection: An in-silico investigation". International journal of molecular sciences,

, 21(10), 3426. https://doi.org/10.3390/ijms21103426.

BELL, E. W. AND Y. ZHANG "DockRMSD: an open-source tool for atom

mapping and RMSD calculation of symmetric molecules through graph isomorphism".

Journal of cheminformatics, 2019, 11(1), 1-9. https://doi.org/10.1186/s13321-019-

-7.

ARBA, M., S. IHSAN AND D. H. TJAHJONO "In silico study of porphyrin-

anthraquinone hybrids as CDK2 inhibitor". Computational Biology and Chemistry,

, 67, 9-14. https://doi.org/10.1016/j.compbiolchem.2016.12.005.

VARGAS, J. A. R., A. G. LOPEZ, M. C. PIÑOL AND M. FROEYEN "Molecular

docking study on the interaction between 2-substituted-4, 5-difuryl Imidazoles with

different Protein Target for antileishmanial activity". Journal of Applied

Pharmaceutical Science, 2018, 8(3), 014-022.

http://dx.doi.org/10.7324/JAPS.2018.8303.

HEVENER, K. E., W. ZHAO, D. M. BALL, K. BABAOGLU, et al. "Validation of

Molecular Docking Programs for Virtual Screening against Dihydropteroate Synthase".

J Chem Inf Model, 2009, 49(2), 444-460. https://doi.org/10.1021/ci800293n.

ZINAD, D. S., A. MAHAL, S. SISWODIHARDJO, M. R. F. PRATAMA, et al.

"3D-Molecular Modeling, Antibacterial Activity and Molecular Docking Studies of

Some Imidazole Derivatives". Egyptian Journal of Chemistry, 2021, 64(1), 93-105.

https://dx.doi.org/10.21608/ejchem.2020.31043.2662.

Descargas

Publicado

2023-12-18

Cómo citar

Mederos-Nuñez, Y., Ferrer-Serrano, A., Rosales-Rosabal, R., Joa-Acree, R., & García-López, A. (2023). Acoplamiento molecular de imidazoles psudopeptídicos como inhibidores selectivos contra la enzima CYP51. Revista Cubana De Química, 35(3), 368–395. Recuperado a partir de https://cubanaquimica.uo.edu.cu/index.php/cq/article/view/5342

Número

Sección

Artículos

Artículos más leídos del mismo autor/a